Software description
EMCO WinNC Fanuc 21 MB
Ref.No. EN 1901 Edition C2003-7
Preface

The EMCO WinNC GE SERIES FANUC 21MB Milling Software is part of the EMCO training concept on PC-basis.

This concept aims at learning the operation and programming of a certain machine control on the PC.

The milling machines of the EMCO PC MILL and CONCEPT MILL series can be directly controlled via PC by means of the EMCO WinNC for the EMCO MILL.

The operation is rendered very easy by the use of a digitizer or the control keyboard with TFT flat panel display (optional accessory), and it is didactically especially valuable since it remains very close to the original control.

This manual does not include the whole functionality of the control software GE SERIES FANUC 21MB Milling, however emphasis was laid on the simple and clear illustration of the most important functions so as to achieve a most comprehensive learning success.

In case any questions or proposals for improving this manual should arise, please contact us directly:

EMCO MAIER Gesellschaft m. b. H.
Department for technical documentation
A-5400 Hallein, Austria

All rights reserved, reproduction only by authorization of Messrs. EMCO MAIER
© EMCO MAIER Gesellschaft m.b.H., Hallein 2003
Contents

A: Key Description
- Control Keyboard, Digitizer Overlay .. A1
- Key Functions .. A1
- Data Input Keys .. A2
- Function Keys .. A2
- Machine Control Keys .. A4
- PC Keyboard ... A6

B: Basics
- Reference Points of the EMCO Milling Machines B1
- Zero offset .. B2
- Coordinate System .. B2
- Coordinate System with Absolute Programming B2
- Input of the Zero Offset ... B3
- Tool Data Measuring ... B4
- Tool Data Measuring by Scraping ... B5

C: Operating Sequences
- Survey Operating Modes ... C1
- Approach the Reference Point .. C2
- Setting of Language and Workpiece Directory C3
- Program Input ... C4
 - Call Up a Program .. C4
 - Input of a block .. C4
 - Search a Word ... C4
 - Insert a Word .. C4
 - Alter a Word .. C4
 - Delete a Word ... C4
 - Insert a Block ... C4
 - Delete a Block ... C4
- Data Input - Output .. C5
- Delete a Program ... C5
- Delete All Programs ... C5
- Program Output .. C6
- Program Input .. C6
- Tool Offset Output ... C6
- Tool Offset Input ... C6
- Print Programs .. C6
- Program Run .. C7
- Start of a Part Program ... C7
- Displays while Program Run ... C7
- Block Search ... C7
- Program Influence .. C7
- Program interruption ... C7
- Display of the Software Versions ... C7
- Part Counter and Piece Time ... C8
- Graphic Simulation .. C9

D: Programming
- Program Structure ... D1
- Used Addresses ... D1
- Survey of G Commands .. D2
- Survey of M Commands .. D3
- Description of G Commands .. D4
- G00 Positioning (Rapid Traverse) .. D4
- G01 Linear Interpolation .. D4
- G02 Circular Interpolation Clockwise ... D6
- G03 Circular Interpolation Counterclockwise D6
- G04 Dwell ... D7
- G05 Coordination System with Incremental Programming D8
- G09 Exact Stop ... D10
- G10 Data Setting .. D10
- G15 End Polar Coordinate Interpolation ... D11
- G16 Begin Polar Coordinate Interpolation .. D11
- G17-G19 Plane Selection ... D12
- G20 Measuring in Inches ... D12
- G21 Measuring in Millimeter .. D12
- G28 Approach Reference Point ... D13
- Cutter Radius Compensation ... D14
- G40 Cancel Cutter Radius Compensation D14
- G41 Cutter Radius Compensation left .. D14
- G42 Cutter Radius Compensation right .. D14
- G43 Tool Length Compensation positive D16
- G44 Tool Length Compensation negative D16
- G49 Cancel Tool Length Compensation ... D16
- G50 Cancel Scale Factor, Mirror ... D16
- G51 Scale Factor, Mirror .. D16
- Mirroring a Contour .. D17
- G52 Local Coordinate System ... D18
- G53 Machine Coordinate System .. D18
- G54 - G59 Zero Offset 1 - 6 ... D18
- G63 Thread Cutting Mode On ... D19
- G64 Cutting mode .. D19
- G65 - G69 Coordinate System Rotation ... D19
- Drilling Cycles G71 - G89 ... D20
- G73 Chip Break Drilling Cycle .. D21
- G74 Left Tapping Cycle .. D22
- G76 Fine Drilling Cycle .. D22
- G80 Cancel Drilling Cycles ... D23
- G81 Drilling Cycle .. D23
- G82 Drilling Cycle with Dwell ... D23
- G83 Withdrawal Drilling Cycle ... D24
- G84 Tapping Cycle .. D25
- G85 Reaming Cycle ... D26
- G86 Drilling Cycle with Spindle Stop ... D26
- G87 Back Pocket Drilling Cycle ... D27
- G88 Drilling Cycle with Program Stop ... D27
- G89 Reaming Cycle with Dwell ... D28
- G90 Absolute Programming ... D28
- G91 Incremental Programming ... D28
- G92 Coordinate System Setting ... D28
- G94 Feed per Minute .. D28
- G95 Feed per Revolution ... D28
- G97 Revolutions per Minute ... D28
- G98 Retraction to the Start Plane ... D28
- G99 Retraction to the Withdrawal Plane ... D28
Contents

Description of M Commands ... D29
M00 Programmed Stop .. D29
M01 Programmed Stop, Conditional D29
M02 Main Program End .. D29
M03 Milling Spindle ON Clockwise D29
M04 Milling Spindle ON Counterclockwise D29
M05 Milling Spindle OFF ... D29
M06 Tool Change .. D29
M08 Coolant ON ... D29
M09 Coolant OFF .. D29
M27 Swivel Dividing Head .. D29
M30 Main Program End .. D29
M71 Puff blowing ON .. D29
M72 Puff blowing OFF ... D29
M98 Subprogram Call ... D30
M99 Subprogram End, Jump Instruction D30

G: Flexible NC programming
Variables and arithmetic parameters G1
Calculating with variables .. G1
Control structures ... G2
Relational operators .. G2

H: Alarms and Messages
Input Device Alarms 3000 - 3999 H2
Machine Alarms 6000 - 7999 .. H3
Axis Controller Alarms 8000 - 9999 H11

I: Control Alarms
Control Alarms ... I1

Starting Information
see attachment
A: Key Description
Control Keyboard, Digitizer Overlay

Key Functions

RESET Cancel an alarm, reset the CNC (e.g. interrupt a program), etc.
HELP Helping menu
CURSOR Search function, line up/down
PAGE Page up/down
ALTER Alter word (replace)
INSERT Insert word, create new program
DELETE Delete (program, block, word)
EOB End Of Block

CAN Delete input
INPUT Word input, data input
POS Indicates the current position
PROG Program functions
OFFSET SETTING Setting and display of offset values, tool and wear data, variables
SYSTEM Setting and display of parameter and display of diagnostic data
MESSAGES Alarm and message display
GRAPH Graphic display

emco
Data Input Keys

Note for the Data Input Keys
Each data input key runs several functions (numbers, address character(s)). Repeated pressing of the key switches to the next function automatically.

Function Keys

Note for Function Keys
With the PC keyboard the function keys can be displayed as softkeys by pressing the key F12.
Machine Control Keys

The machine control keys are in the lower block of the control keyboard resp. the digitizer overlay. Depending on the used machine and the used accessories not all functions may be active.

![Machine control keyboard](image1)

Machine control keyboard

![Machine control keyboard of the EMCO PC- Mill Serie](image2)

Machine control keyboard of the EMCO PC- Mill Serie

- **SKIP** (skip blocks will not be executed)
- **DRY RUN** (test run of programs)
- **OPT STOP** (program stop at M01)
- **RESET**
- Single block machining
- Program stop / program start
- manual axis movement
- Approaching the reference point in all axes
- Feed stop / feed start
- Spindle override lower / 100% / higher
Spindle stop / spindle start; spindle start in JOG and INC1...INC10000 mode:
Clockwise: press key short, Counterclockwise: press min. 1 sec.
Open / close door
Swivel dividing head
Open / close clamping device
Swivel tool turret
Coolant on/off
AUX OFF / AUX ON (auxiliary drives off / on)

Vorschub- / Eilgangkorrekturschalter

Feed / rapid feed override switch

EMERGENCY OFF (Unlock: pull out button)

Key switch for special operations (siehe Maschinenbeschreibung)

Additional NC start key

Additional key clamping device

Consent key

No function
Some alarms will be acknowledged with the key ESC.

By pressing the key F1 the modes (MEM, EDIT, MDI,...) will be displayed in the softkey line.
The assignment of the accessory functions is described in the chapter "Accessory Functions".

The meaning of the key combination ctrl 2 depends on the machine:
EMCO PC MILL 50/55: Puff blowing ON/OFF
EMCO PC MILL 100/125/155: coolant ON/OFF

* With F12 the function keys POS, PROG, OFFSET SETTING, SYSTEM, MESSAGES and GRAPH will be displayed in the softkey line.

The machine functions in the numeric key block are active only with active NUM lock.
B: Basics

Reference Points of the EMCO Milling Machines

M = Machine zero point
An unchangeable reference point established by the machine manufacturer. Proceeding from this point the entire machine is measured. At the same time "M" is the origin of the coordinate system.

R = Reference point
A position in the machine working area which is determined exactly by limit switches. The slide positions are reported to the control by the slides approaching the "R". Required after every power failure.

N = Tool mount reference point
Starting point for the measurement of the tools. "N" lies at a suitable point on the tool holder system and is established by the machine manufacturer.

W = Workpiece zero point
Starting point for the dimensions in the part program. Can be freely established by the programmer and moved as desired within the part program.
Zero offset

With EMCO milling machines the machine zero point "M" lies on the left front edge of the machine table. This position is unsuitable as a starting point for dimensioning. With the so-called zero offset the coordinate system can be moved to a suitable point in the working area of the machine.

In the Operating Area Parameter - Zero Offsets are four adjustable zero offsets available.

When you define a value in the offset register, this value will be considered with call up in program (G54 - G57) and the coordinate zero point will be shifted from the machine zero M to the workpiece zero W.

The workpiece zero point can be shifted within a program in any number.
More informations see in the command description.

Coordinate System

The X coordinate lies parallel to the front edge of the machine table, the Y coordinate lies parallel to the side edge of the machine table, the Z coordinate is vertical to the machine table.

Z coordinate values in minus direction describe movements of the tool system towards the workpiece, values in plus direction away from the workpiece.

Coordinate System with Absolute Programming

The origin of the coordinate system lies in the machine zero point "M" or after a zero offset in the work piece zero point "W".
All target points are described from the origin of the coordinate system by indication of the respective X, Y and Z distances.

Coordinate System with Incremental Programming

The origin of the coordinate system lies at the tool mount reference point "N" or at the tool tip after a tool call-up.
With incremental programming the actual pathes of the tool (from point to point) are described.
Input of the Zero Offset

- Press the key [OFFSET]
- Select the softkey W.SHFT
- The input pattern beside will be displayed
- You can enter the following offsets:
 00 basic offset
 01 G54
 02 G55
 03 G56
The basic offset is always active, other offsets will be added to.

- By pressing the key PAGE you get the next display page. Here you can enter the following offsets:
 04 G57
 05 G58
 06 G59
- Below X, Y, Z you can enter the distance from the machine zero point to the workpiece zero point (pos. sign).
- Go with the cursor to the desired offset with the keys ↑ and ↓.
- Enter the desired offset (e.g.: X+30.5) and press the key [INSERT]
- Enter the desired offset values one by one.
Tool Data Measuring

Aim of the tool data measuring:
The CNC should use the tool tip resp. the tool centre at the face end for positioning, not the tool mount reference point.

Every tool which is used for machining has to be measured. The distance "N" between tool tip and tool mount reference point is to be measured.

To every of this distances a H-parameter in the offset register (GEOMT) is related to (Tool 1 - H1).

The correction number can be any register number (max.32), but has to be considered with tool call in program.

The length corrections can be measured half-automatically, the cutter radius has to be inserted manually as H-parameter.

Inserting the cutter radius is only necessary for using cutter radius compensation with this tool.

For G17 (XY plane active):
Tool data measuring (GEOMETRIE) occurs for Z absolute from point "N"
R radius of the cutter

For all other active planes always the vertical axis to the plane is computed. In the following the normal case G17 is described.
Tool Data Measuring by Scraping

Procedure

- Clamp a workpiece in the working area. The measuring point has to be reachable with the tool mount reference point and with all tools to be measured. The tool mount reference point of the EMCO PC MILL 100/125/155 is on the reference tool (clamp before).
- Select the JOG mode
- Place a thin sheet of paper between work piece and milling spindle.
- Traverse with the tool mount reference point on the workpiece (standing spindle)
 Reduce feed to 1%
 Traverse with the spindle (tool mount reference point) down to the workpiece, so far that the paper still can be moved.

- Press the key POS and the softkey REL to show the relative position at the screen.

- Press the key \[\text{Z} \] - the Z display flashes

- Reset Z value with Z0 and softkey PRESET to 0
- Clamp the tool to be measured.
- Change to MDI mode
- Switch on the spindle (e.g. S1000 M3 NC-Start)
- Change to JOG mode.

- Press the key SETSEG
- Clamp tool to be measured and scrap on the workpiece
- Now the screen shows the length difference between tool mount reference point and the tool tip (Z value relative)
- Select the corresponding H- parameter
 with the keys \[\text{up} \] \[\text{down} \]
- Key in the displayed Z value as H-parameter and take it over with the INPUT key.

- Clamp next tool and scrap onto the workpiece surface etc.
C: Operating Sequences

Survey Operating Modes

REF
In this operating mode the reference point will be approached.
With reaching the reference point the actual position display is set to the value of the reference point coordinates. By that the control acknowledges the position of the slides in the working area.
With the following situations the reference point has to be approached:
• After switching on the machine
• After mains interruption
• After alarm "Approach reference point" or "Ref. point not reached"
• After collisions or if the slides stucked because of overload

JOG
With the JOG keys the slides can be traversed manually.

I1 ... I1000 1 ... 10001
In this operation mode the slides can be traversed for the desired increment (1...1000 in μm/10⁻⁴ inch) by means of the JOG keys

The selected increment (1, 10, 100, ...) must be larger than the machine resolution (lowest possible traverse movement), otherwise no movement occurs.

MEM
For working off a part program the control calls up block after block and interprets them.
The interpretation considers all correction which are called up by the program.
The so-handled blocks will be worked off one by one.

EDIT
In the EDIT mode you can enter part programs and transmit data.

REPOS
Repositioning, approach back to the contour in JOG mode.

Teach In
Making programs in dialogue with the machine in MDA mode.
Approach the Reference Point

By approaching the reference point the control will be synchronized to the machine.

- Change into REF mode

- Press as first the direction keys $\text{-}Z$ or $\text{+}Z$, then $\text{-}X$ or $\text{+}X$ and $\text{-}Y$ or $\text{+}Y$ to approach the reference point in the respective direction.

- With the key REF ALL all axes will be approached automatically in the correct sequence (PC keyboard).

Danger of Collisions

Mind for obstacles in the working area (Clamping devices, clamped work pieces, etc.)

After reaching the reference point its position will be displayed as actual position. Now the machine is synchronized to the control.
Setting of Language and Workpiece Directory

- Press the key
- Press the key multiple, until the setting page (PARAMETER GENERAL) will be displayed.

Workpiece Directory

In the workpiece directory the CNC programs created by the operator will be stored. The workpiece directory is a subdirectory of the program directory which was determined with installation. Enter in the input field PROGRAM PATH the name of the workpiece directory with the PC keyboard, max. 8 characters, no drives or pathes. Not existing directories will be created.

Active Language

Selection from installed languages, the selected language will be activated with restart of the software. Enter the language sign in the input field LANGUAGE:

- DT for German
- EN for English
- FR for French
- SP for Spanish
Program Input

Part programs and subprograms can be entered in the EDIT mode.

Call Up a Program

- Change into EDIT mode
- Press the key
- With the softkey DIR the existing programs will be displayed.
- Enter program number O...
- New program: Press the key
- Existing program: Press the softkey O SRH.

Input of a block

Example:

```
  N 154
  C 1
  X 3 0
  ... ... ...
  EOB
```

Block number (not necessary)

1. word

2. word

EOB - End of block (on PC keyboard also

Note:
With the parameter SEQUENCE NO (PARAMETER MANUELL) you can determine whether block numbering should occur automatically (1 = yes, 0 = no).

Search a Word
Enter the address of the word to be searched (e.g.: X) and press the softkey SRH ↓.

Insert a Word
Move the cursor before the word, that should be before the inserted word, enter the new word (address and value) and press the key.

Alter a Word
Move the cursor before the word that should be altered, enter the word and press the key.

Delete a Word
Move the cursor before the word, that should be deleted and press the key.

Insert a Block
Move the cursor before the EOB sign “;” in that block which should be before the inserted block and enter the block to be inserted.

Delete a Block
Enter block number (if no block number exists: N0) and press the key.
Delete a Program

EDIT mode
Enter the program number (e.g.: O22) and press the key DELETE.

Delete All Programs

EDIT mode
Enter the program number O 0-9999 and press the key DELETE.

Data Input - Output

- Press the key SYSTEM.
- Press the key PAGE up or PAGE down until (PARAMETER RS232C INTERFACE) is displayed.

Settings:
Baudrate
110, 150, 300, 600, 1200, 2400, 4800, 9600
Parity
E, O, N
Stopbits
1, 2
Datenbits
7, 8

Data transmission from / to original control in ISO-Code only.
Standard adjustment:
7 Datenbits, Parity even (=E), 1 Stopbit, 9600 baud

Control parameter:
Bit 0: 1...Transmission will be cancelled with ETX (End of Text) code
0...Transmission will be cancelled with RESET
Bit 7: 1...Overwrite part program without message
0...Message, if a program already exists
ETX code: % (25H)

Selection of the input/output interface

Adjusting the serial interface

NOTE
When you use an interface expansion card (e.g. for COM 3 and COM 4), take care that for every interface a separate interrupt is used (e.g.: COM1 - IRQ4, COM2 - IRQ3, COM3 - IRQ11, COM4 - IRQ10).
Program Output

- EDIT mode
- Enter the receiver in (PARAMETER MANUAL) below "I/O".
- Press the key \[\text{PROG}\].
- Press the softkey OPRT.
- Press the key F11.
- Press the softkey PUNCH
- Enter the program number to be send (e.g. O22).
- When you enter e.g. O5-15, all programs with the numbers 5 to inclusive 15 will be printed.
- When you enter the program numbers 0-9999 all programs will be put out.
- Press softkey EXEC

Program Input

- EDIT mode
- Enter the receiver in (PARAMETER MANUAL) below "I/O".
- Press the key \[\text{PROG}\].
- Press the softkey OPRT.
- Press key F11.
- Press softkey READ
- With input from disk or hard disk you have to enter a program number.
- Enter the program number when you want to read in one program (e.g.: O22).
- When you enter e.g. O5-15, all programs with the numbers 5 to inclusive 15 will be transmitted.
- When you enter O-9999 as program number, all programs will be transmitted.
- Press the softkey EXEC.

Tool Offset Output

- EDIT mode
- Enter the receiver in (PARAMETER MANUAL) below "I/O".
- Press the key \[\text{OFFSET}\].
- Press the softkey OPRT.
- Press the key F11.
- Press the softkey PUNCH.
- Press the softkey EXEC

Tool Offset Input

- EDIT mode
- Enter the receiver in (PARAMETER MANUAL) below "I/O".
- Press the key \[\text{OFFSET}\].
- Press the softkey OPRT.
- Press the key F11.
- Press the softkey READ.
- Press the softkey EXEC

Print Programs

- The printer (standard printer in Windows) must be connected and must be in ON LINE status.
- EDIT mode
- Enter P (Printer) as receiver in (PARAMETER MANUAL) below "I/O".
- Press the key \[\text{PROG}\].
- Press the softkey OPRT.
- Press the key F11.
- Press the softkey PUNCH.
- Enter the program to be printed (e.g. O22) when you want to print one program.
- When you enter e.g. O5-15, all programs with the numbers 5 to inclusive 15 will be transmitted.
- When you enter the program number O-9999 all programs will be printed.
- Press the softkey EXEC.
Program Run

Start of a Part Program
Before starting a program the control and the machine must be ready for running the program.
• Select the EDIT mode.
• Press the key \[\text{PROG}\].
• Enter the desired part program number (e.g.: 079).
• Press the key \[\uparrow\].
• Change to MEM mode.
• Press the key \[\text{MEM}\].

Displays while Program Run
While program run different values can be shown.
• Press the softkey PRGRM (basic status). While program run the actual program block will be displayed.
• Press the softkey CHECK. While program run the actual program block, the actual positions, active G and M commands and speed, feed and tool will be displayed.
• Press the softkey CURRNT. While the program run the aktiv G commands will be displayed.
• Press the key \[\text{POS}\]. The positions will be shown enlarged at the screen.

Block Search
With this function you can start a program at any block.
While block search the same calculations will be proceeded as with normal program run but the slides do not move.
• EDIT mode
• Select the program to be machined.
• Move the cursor with the keys \[\uparrow\] and \[\downarrow\] on that block, with which machining should start.
• Change to MEM mode.
• Start the program with the key \[\text{MEM}\].

Program Influence
DRY RUN
DRY RUN is used for testing programs. The main spindle will not be switched on and all movements occur in rapid feed.
If DRY RUN is active, DRY will be displayed in the first line on the screen.

SKIP
With SKIP all program blocks which are marked with a "/'" (e.g.: /N0120 G00 X...) will not be proceeded and the program will be continued with the next block without a "/'" sign.
If SKIP is active, SKP will be displayed in the first line on the screen.

Program interruption
Single block mode
After every program block the program will be stopped.
Continue the program with the key \[\text{MEM}\].
If the program block is activated SBL will be displayed in the first line on the screen.

M00
After M00 (programmed stop) in the program the program will be stopped. Continue the program with the key \[\text{MEM}\].

M01
If OPT. STOP is active, (display OPT in the first line of the screen) M01 works like M00, otherwise M01 has no effect.

Display of the Software Versions
• Press the key \[\text{SYSTEM}\]
• Select softkey SYSTEM
The software version of the control system and the eventually connected axcontroller, PLC, working status,... will be displayed.
Part Counter and Piece Time

Below the position display the part counter and the piece time are displayed.

The part counter shows the number of program runs. Each M30 (or M02) increases the part counter for 1.

RUN TIME shows the complete running time of all program runs.

CYCLE TIME shows the running time of the actual program and will be reset to 0 with every program start.

Part Counter Reset

- Press softkey POS.
- Press softkey OPRT
- Select between PTSPRE (reset part counter to 0) or RUNPRE (reset run time to 0).

Preset of the Part Counter

The part counter can be preset in (PARAMETER TIMER). Therefore move the cursor on the desired value and enter the new value.

PARTS TOTAL:
Each M30 increases this number by 1. Every program run of every program will be counted (= number of all program runs).

PARTS REQUIRED:
Preset part number. When this number is reached the program will be stopped and message 7043 PIECE COUNT REACHED will be displayed. After that the program can be started only after resetting the part counter or increasing the preset part number.
Graphic Simulation

NC-programs can be simulated graphically.

Press the key \(\text{GRAPH} \).

The screen shows the input pattern for graphic simulation.

The simulation area is a rectangular window, which is determined by the right upper and left lower edge.

Inputs:

AXIS P

Enter the simulation plane here.

0 XY plane
1 XZ plane
2 YZ plane

MAXIMUM/MINIMUM

Enter here the right upper (X, Y, Z) and the left lower (I, J, K) edge of the simulation area ein.

After pressing the key \(\text{GRAPH} \) the softkey 3DVIEW will be shown.

Win 3D View is an option and not included in the basic version of the software.

With the softkey GRAPH you will get into the simulation window.

With the key G. PRM you will go back to the input pattern for graphic simulation.

With the softkey \(\text{GRAPH} \) the graphic simulation starts.

With the softkey \(\text{GRAPH} \) the graphic simulation stops.

With the softkey \(\text{RESET} \) the graphic simulation will be aborted.

Movements in rapid traverse will be displayed as dashed lines, movements in working traverse will be displayed as full lines.
D: Programming

Program Structure

CNC programming for machine tools according to DIN 66025 is used.
The CNC program is a sequence of program blocks which are stored in the control.
With machining of workpieces these blocks will be read and checked by the computer in the programmed order.
The corresponding control signals will be sent to the machine.

The CNC program consists of:
- Program number
- CNC blocks
- Words
- Addresses
- number combinations (for axis addresses partly with sign)

Used Addresses

C chamfer
F feed rate, thread pitch
G path function
H number of the correction value address in the offset register (OFFSET)
I, J, K circle parameter, scale factor, K also number of repetitions of a cycle, mirror axes
M miscellaneous function
N block number 1 to 9999
O Program number 1 to 9499
P dwell, subprogram call
Q cutting depth or shift value in cycle
R radius, retraction height with cycle
S spindle speed
T tool call
X, Y, Z .. position data (X also dwell)
; block end
Survey of G Commands

<table>
<thead>
<tr>
<th>G00'</th>
<th>Positioning (Rapid Traverse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01</td>
<td>Linear Interpolation</td>
</tr>
<tr>
<td>G02</td>
<td>Circular Interpolation Clockwise</td>
</tr>
<tr>
<td>G03</td>
<td>Circular Interpolation Counterclockwise</td>
</tr>
<tr>
<td>G04</td>
<td>Dwell</td>
</tr>
<tr>
<td>G09</td>
<td>Exact Stop</td>
</tr>
<tr>
<td>G10</td>
<td>Data Setting</td>
</tr>
<tr>
<td>G11</td>
<td>Data Setting Off</td>
</tr>
<tr>
<td>G15</td>
<td>End Polar Coordinate Interpolation</td>
</tr>
<tr>
<td>G16</td>
<td>Begin Polar Coordinate Interpolation</td>
</tr>
<tr>
<td>G17'</td>
<td>Plane Selection XY</td>
</tr>
<tr>
<td>G18</td>
<td>Plane Selection ZX</td>
</tr>
<tr>
<td>G19</td>
<td>Plane Selection YZ</td>
</tr>
<tr>
<td>G20</td>
<td>Measuring in Inches</td>
</tr>
<tr>
<td>G21</td>
<td>Measuring in Millimeter</td>
</tr>
<tr>
<td>G28</td>
<td>Approach Reference Point</td>
</tr>
<tr>
<td>G40</td>
<td>Cancel Cutter Radius Compensation</td>
</tr>
<tr>
<td>G41</td>
<td>Cutter Radius Compensation Left</td>
</tr>
<tr>
<td>G42</td>
<td>Cutter Radius Compensation Right</td>
</tr>
<tr>
<td>G43</td>
<td>Tool Length Compensation Positive</td>
</tr>
<tr>
<td>G44</td>
<td>Tool Length Compensation Negative</td>
</tr>
<tr>
<td>G49</td>
<td>Cancel Tool Length Compensation</td>
</tr>
<tr>
<td>G50</td>
<td>Cancel Scale Factor</td>
</tr>
<tr>
<td>G51</td>
<td>Scale Factor</td>
</tr>
<tr>
<td>G52</td>
<td>Local Coordinate System</td>
</tr>
<tr>
<td>G53</td>
<td>Machine Coordinate System</td>
</tr>
<tr>
<td>G54</td>
<td>Zero Offset 1</td>
</tr>
<tr>
<td>G55</td>
<td>Zero Offset 2</td>
</tr>
<tr>
<td>G56</td>
<td>Zero Offset 3</td>
</tr>
<tr>
<td>G57</td>
<td>Zero Offset 4</td>
</tr>
<tr>
<td>G58</td>
<td>Zero Offset 5</td>
</tr>
<tr>
<td>G59</td>
<td>Zero Offset 6</td>
</tr>
<tr>
<td>G61</td>
<td>Exact Stop Mode</td>
</tr>
<tr>
<td>G62</td>
<td>Automatic Corner Override</td>
</tr>
<tr>
<td>G63</td>
<td>Thread Cutting Mode On</td>
</tr>
<tr>
<td>G64</td>
<td>Cutting mode</td>
</tr>
<tr>
<td>G68</td>
<td>Coordinate System Rotation ON</td>
</tr>
<tr>
<td>G69</td>
<td>Coordinate System Rotation OFF</td>
</tr>
<tr>
<td>G73</td>
<td>Chip Break Drilling Cycle</td>
</tr>
<tr>
<td>G74</td>
<td>Left Tapping Cycle</td>
</tr>
<tr>
<td>G76</td>
<td>Fine Drilling Cycle</td>
</tr>
<tr>
<td>G80'</td>
<td>Cancel Drilling Cycles (G83 bis G85)</td>
</tr>
<tr>
<td>G81</td>
<td>Drilling Cycle</td>
</tr>
<tr>
<td>G82</td>
<td>Drilling Cycle with Dwell</td>
</tr>
<tr>
<td>G83</td>
<td>Withdrawal Drilling Cycle</td>
</tr>
<tr>
<td>G84</td>
<td>Tapping Cycle</td>
</tr>
<tr>
<td>G85</td>
<td>Reaming Cycle</td>
</tr>
<tr>
<td>G86</td>
<td>Drilling Cycle with Spindle Stop</td>
</tr>
<tr>
<td>G87</td>
<td>Back Pocket Drilling Cycle</td>
</tr>
<tr>
<td>G88</td>
<td>Drilling Cycle with Program Stop</td>
</tr>
<tr>
<td>G89</td>
<td>Reaming Cycle with Dwell</td>
</tr>
<tr>
<td>G90'</td>
<td>Absolute Programming</td>
</tr>
<tr>
<td>G91</td>
<td>Incremental Programming</td>
</tr>
<tr>
<td>G92</td>
<td>Coordinate System Setting</td>
</tr>
<tr>
<td>G94</td>
<td>Feed per Minute</td>
</tr>
<tr>
<td>G95</td>
<td>Feed per Revolution</td>
</tr>
<tr>
<td>G97</td>
<td>Revolutions per Minute</td>
</tr>
<tr>
<td>G98</td>
<td>Retraction to Starting Plane (Drilling Cycles)</td>
</tr>
<tr>
<td>G99</td>
<td>Retraction to Withdrawal Plane</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>G04</td>
<td>Dwell</td>
</tr>
<tr>
<td></td>
<td>G09</td>
<td>Exact Stop</td>
</tr>
<tr>
<td></td>
<td>G10</td>
<td>Data Setting</td>
</tr>
<tr>
<td></td>
<td>G11</td>
<td>Data Setting Off</td>
</tr>
<tr>
<td></td>
<td>G28</td>
<td>Approach Reference Point</td>
</tr>
<tr>
<td></td>
<td>G52</td>
<td>Local Coordinate System</td>
</tr>
<tr>
<td></td>
<td>G53</td>
<td>Machine Coordinate System</td>
</tr>
<tr>
<td></td>
<td>G00</td>
<td>Positioning (Rapid Traverse)</td>
</tr>
<tr>
<td></td>
<td>G01</td>
<td>Linear Interpolation</td>
</tr>
<tr>
<td></td>
<td>G02</td>
<td>Circular Interpolation Clockwise</td>
</tr>
<tr>
<td></td>
<td>G03</td>
<td>Circular Interpolation Counterclockwise</td>
</tr>
<tr>
<td></td>
<td>G17</td>
<td>Plane Selection XY</td>
</tr>
<tr>
<td></td>
<td>G18</td>
<td>Plane Selection ZX</td>
</tr>
<tr>
<td></td>
<td>G19</td>
<td>Plane Selection YZ</td>
</tr>
<tr>
<td></td>
<td>G20</td>
<td>Measuring in Inches</td>
</tr>
<tr>
<td></td>
<td>G21</td>
<td>Measuring in Millimeter</td>
</tr>
<tr>
<td></td>
<td>G40</td>
<td>Cancel Cutter Radius Compensation</td>
</tr>
<tr>
<td></td>
<td>G41</td>
<td>Cutter Radius Compensation Left</td>
</tr>
<tr>
<td></td>
<td>G42</td>
<td>Cutter Radius Compensation Right</td>
</tr>
<tr>
<td></td>
<td>G43</td>
<td>Tool Length Compensation Positive</td>
</tr>
<tr>
<td></td>
<td>G44</td>
<td>Tool Length Compensation Negative</td>
</tr>
<tr>
<td></td>
<td>G49</td>
<td>Cancel Tool Length Compensation</td>
</tr>
<tr>
<td></td>
<td>G50</td>
<td>Cancel Scale Factor</td>
</tr>
<tr>
<td></td>
<td>G51</td>
<td>Scale Factor</td>
</tr>
<tr>
<td></td>
<td>G52</td>
<td>Local Coordinate System</td>
</tr>
<tr>
<td></td>
<td>G53</td>
<td>Machine Coordinate System</td>
</tr>
<tr>
<td></td>
<td>G54</td>
<td>Zero Offset 1</td>
</tr>
<tr>
<td></td>
<td>G55</td>
<td>Zero Offset 2</td>
</tr>
<tr>
<td></td>
<td>G56</td>
<td>Zero Offset 3</td>
</tr>
<tr>
<td></td>
<td>G57</td>
<td>Zero Offset 4</td>
</tr>
<tr>
<td></td>
<td>G58</td>
<td>Zero Offset 5</td>
</tr>
<tr>
<td></td>
<td>G59</td>
<td>Zero Offset 6</td>
</tr>
<tr>
<td></td>
<td>G61</td>
<td>Exact Stop Mode</td>
</tr>
<tr>
<td></td>
<td>G62</td>
<td>Automatic Corner Override</td>
</tr>
<tr>
<td></td>
<td>G63</td>
<td>Thread Cutting Mode On</td>
</tr>
<tr>
<td></td>
<td>G64</td>
<td>Cutting mode</td>
</tr>
<tr>
<td></td>
<td>G68</td>
<td>Coordinate System Rotation ON</td>
</tr>
<tr>
<td></td>
<td>G69</td>
<td>Coordinate System Rotation OFF</td>
</tr>
<tr>
<td></td>
<td>G73</td>
<td>Chip Break Drilling Cycle</td>
</tr>
<tr>
<td></td>
<td>G74</td>
<td>Left Tapping Cycle</td>
</tr>
<tr>
<td></td>
<td>G76</td>
<td>Fine Drilling Cycle</td>
</tr>
<tr>
<td></td>
<td>G80</td>
<td>Cancel Drilling Cycles (G83 bis G85)</td>
</tr>
<tr>
<td></td>
<td>G81</td>
<td>Drilling Cycle</td>
</tr>
<tr>
<td></td>
<td>G82</td>
<td>Drilling Cycle with Dwell</td>
</tr>
<tr>
<td></td>
<td>G83</td>
<td>Withdrawal Drilling Cycle</td>
</tr>
<tr>
<td></td>
<td>G84</td>
<td>Tapping Cycle</td>
</tr>
<tr>
<td></td>
<td>G85</td>
<td>Reaming Cycle</td>
</tr>
<tr>
<td></td>
<td>G86</td>
<td>Drilling Cycle with Spindle Stop</td>
</tr>
<tr>
<td></td>
<td>G87</td>
<td>Back Pocket Drilling Cycle</td>
</tr>
<tr>
<td></td>
<td>G88</td>
<td>Drilling Cycle with Program Stop</td>
</tr>
<tr>
<td></td>
<td>G89</td>
<td>Reaming Cycle with Dwell</td>
</tr>
<tr>
<td></td>
<td>G90'</td>
<td>Absolute Programming</td>
</tr>
<tr>
<td></td>
<td>G91</td>
<td>Incremental Programming</td>
</tr>
<tr>
<td></td>
<td>G92</td>
<td>Coordinate System Setting</td>
</tr>
<tr>
<td></td>
<td>G94</td>
<td>Feed per Minute</td>
</tr>
<tr>
<td></td>
<td>G95</td>
<td>Feed per Revolution</td>
</tr>
<tr>
<td></td>
<td>G97</td>
<td>Revolutions per Minute</td>
</tr>
<tr>
<td></td>
<td>G98</td>
<td>Retraction to Starting Plane (Drilling Cycles)</td>
</tr>
<tr>
<td></td>
<td>G99</td>
<td>Retraction to Withdrawal Plane</td>
</tr>
</tbody>
</table>

1. Einschalzustand
2. Nur satzweise wirksam
Survey of M Commands

M00 Programmed Stop
M01 Programmed Stop, Conditional
M02 Program End
M03 Main Spindle ON Clockwise
M04 Main Spindle ON Counterclockwise
M05^1 Main Spindle OFF
M06 Tool Change
M08 Coolant ON
M09^1 Coolant OFF
M10 Lock dividing head
M11 Unlock dividing head
M19 Oriented Spindle Stop
M25 Release Clamping Device
M26 Close Clamping Device
M30 Program End
M71 Puff blowing ON
M72^1 Puff blowing OFF
M98 Subprogram Call
M99 Subprogram End

^1 Initial status
Description of G Commands

G00 Positioning (Rapid Traverse)

Format
N... G00 X... Y... Z...

The slides are traversed at maximum speed to the programmed target point (tool change position, start point for a following machining routine)

Notes
• A programmed feed F will be suppressed while G00
• The maximum speed is defined by the producer of the machine
• The feed override switch is active

Example
absolute G90
N50 G00 X40 Y56
incremental G91
N50 G00 X-30 Y-30.5

G01 Linear Interpolation

Format
N... G01 X... Y... Z.... F....

Straight movements at the programmed feed rate.

Example
absolute G90
N... G94
N20 G01 X40 Y20.1 F500
incremental G91
N... G94 F500
N20 G01 X20 Y-25.9
Chamfers and Radius

By programming the parameter C or R a chamfer or a radius can be inserted between two G00 or G01 movements.

Format:
N. G00/G01 X.. Y.. C/R
N. G00/G01 X.. Y..

Programming of chamfers and radii is possible for the active plane only. Following the programming in the XY plane (G17) is described.

The movement which is programmed has to start at point b of the drawing.
With incremental programming the distance from point b must be programmed.

With single block mode the tool starts first at point c and then at point d.

The following situations cause an error message:

- If the traverse path in one of the two G00/G01 blocks is so short, that with inserting a chamfer or a radius no intersection point would be existing, error message no. 055 will appear.
- If in the second block no G00/G01 command is programmed, error message no. 51, 52 will appear.
G02 Circular Interpolation
Clockwise

G03 Circular Interpolation
Counterclockwise

Format
N... G02/G03 X... Y... Z... I... J... K... F...
or
N... G02/G03 X... Y... Z... R... F...

X, Y, Z... End point of the arc (abs. or incr.)
I, J, K... Incremental circle parameter
(distance from start point to the centre
point, I is related to X, J to Y, K to Z)
R......... Radius of the arc (arc < semicircle with +R,
> semicircle with -R), can be programmed
instead of the circle parameter I, J, K

The tool will be traversed along the defined arc with
the programmed feed F.

Notes
The circular interpolation can be proceeded in the
active plane only.
Programming the value 0 for I, J or K can be omitted.
The observation of G02, G03 occurs always vertical
to the active plane.

Helix Interpolation

Normally only two axes will be programmed for a
circle. These axes determine also the active plane.
If a third vertical axis will be programmed, the
movements of the slides will be coupled in a way that
a screw line results.
The programmed feed rate will not be hold at the real
path, but on the circle path (projected). The third,
linear traversed axis will be controlled in a way, that
it reaches the end point at the same time as the
circular traversed axes.

Limitations
- A helix interpolation is possible with G17 (XY
 plane) only.
- The gradient angle φ must be less than 45°.
- If the spatial tangents differ more than 2° with
 block transitions, an exact stop will be proceeded
 in every case before/after the helix.
G04 Dwell

Format
N... G04 X... [sec]
or
N... G04 P... [msec]

The tool movement will be stopped for a time defined by X or P in the last reached position - sharp edges - transitions, cleaning drilling ground, exact stop

Notes
• With address P no decimal point can be used
• The dwell starts at the moment when the tool movement speed from the last movement becomes zero.
• t max. = 2000 sec
• Input resolution 100 msec (0.1 sec)

Examples
N75 G04 X2.5 (Dwell = 2.5 sec)
N95 G04 P1000 (Dwell = 1 sec = 1000 msec)
G7.1 Cylindrical Interpolation

Format:

N... G7.1 Q...

N... G7.1 Q0

G7.1 Q... Starts the cylinder interpolation.
The Q-value describes the radius of the blank part.

G7.1 Q0 End of cylinder interpolation

This function enables the development of a cylinder surface in programming.
In this way e.g. programs for cylindrical cam machining on lathes can be created.

The traverse amount of the rotary axis Q programmed by indication of the angle is converted in the control into the distance of a fictitious linear axis along the external surface of the cylinder.
Thus, it is possible that linear and circular interpolations on this area can be carried out with another axis.

With G19 the level is determined in which the rotary axis Q is preset in parallel to the Y-axis.

Notes:

- The reference point of the cylinder must be entered incrementally, since otherwise it would be approached by the tool!
- In the offset data cutter position 0 must be allocated to the tool. However, the Miller radius must be entered.
- In mode G7.1 the coordinate system must not be changed.
- G7.1 Q.. and/or G13.1 Q0 must be programmed in the mode "cutter radius compensation off" (G40) and cannot be started or terminated within "cutter radius compensation on" (G41 or G42).
- G7.1 Q.. and G7.1 Q0 must be programmed in separate blocks.
- In a block between G7.1 Q.. and G7.1 Q0 an interrupted program cannot be restarted.
- The arc radius with circular interpolation (G2 or G3) must be programmed via an R-command and must not be programmed in degree and/or via K and J-coordinates.
- In the geometry program between G7.1 Q.. and G7.1 Q0 no rapid motion (G0) and/or positioning procedures causing rapid motion movements (G28) or drilling cycles (G83 to G89) must be programmed.
- The feed entered in the mode cylindrical interpolation is to be considered as traverse speed on the unrolled cylinder area.
Example - Cylindrical Interpolation

X axis with diametrical programming and Q axis with angular programming.

```
O0002 (Cylindrical Interpol.)
N15 T0505
N25 M13   Sense of rotation for driven tools
          (be equivalent to M3)
N30 G97 S2000
N32 M52   Positioning of the spindle
N35 G7.1 Q19.1 Start of the interpolation / blank part radius

N37  G94 F200
N40 G0 X45 Z-5
N45 G1 X35 Q0 Z-5
N50 G1 Z-15 Q22.5
N55 Z-5 Q45
N60 Z-15 Q67.5
N65 Z-5 Q90
N70 Z-15 Q112.5
N75 Z-5 Q135
N80 Z-15 Q157.5
N85 Z-5 Q180
N90 Z-15 Q202.5
N95 Z-5 Q225
N100 Z-15 Q247.5
N105 Z-5 Q270
N110 Z-15 Q292.5
N115 Z-5 Q315
N120 Z-15 Q337.5
N125 Z-5 Q360
N130 X45
N135 G7.1 Q0   End of interpolation
N140 M53     End of roundaxis operation
N145 G0 X80 Z100 M15
N150 M30
```
G09 Exact Stop

Format
N... G09

A block will then be proceeded, when the slides are braked to 0 before. Therefore the edges will not be rounded and precise transitions will result.
G09 is effective blockwise.

G10 Data Setting

The command G10 allows to overwrite control data, programming parameters, writing tool data etc...
G10 is frequently used to program the workpiece zero point.

Zero point offset

Format
N... G10 L2 Pp IP...;

p=0 External workpiece zero point offset
p=1-6 Normal workpiece zero point offset corresponding to the coordinatesystem 1 - 6
IP Workpiece zero point offset for the several axis.
At the programming IP become replaced by the axlesletters (X,X,Z).

Tool Compensation

Format
N... G10 L11 P...R...;

P Number of the toll compensation
R Tool compensation value in the im absolute command- Mode (G90).
At the inkremental value programming (G91) the tool compensation value get add up to the existing value.

Note: By the reason of compatibility with older NC-programms the system allow the input of L1 instead of L11
G15 End Polar Coordinate Interpolation
G16 Begin Polar Coordinate Interpolation

Format
N... G15/G16

Between G16 and G15 points can be defined by polar coordinates.
The selection of the plane in which polar coordinates can be programmed occurs with G17 - G19.
With the address of the first axis the radius will be programmed, with the address of the second axis the angle will be programmed, both related to the workpiece zero point.

Example
N75 G17 G16
N80 G01 X50 Z30
first axis: radius X=50
second axis: angle Y=30
G17-G19 Plane Selection

Format
N... G17/G18/G19

With G17 to G19 the plane will be defined, in which circular interpolation and polar coordinate interpolation can be proceeded and in which the cutter radius compensation will be calculated.
In the vertical axis to the active plane the tool length compensation will be proceeded.

G17 XY-Plane
G18 ZX-Plane
G19 YZ-Plane

G20 Measuring in Inches

Format
N... G20

By programming G20 the following values will be converted to the inch system:
• Feed F [mm/min, inch/min, mm/rev, inch/rev]
• Offset values (WORK, geometry and wear) [mm, inch]
• Traverse paths [mm, inch]
• Display of the actual position [mm, inch]
• Cutting speed [m/min, feet/min]

Notes
• For clearness G20 should be programmed in the first block
• The last active measuring system will be hold - even with main switch off/on.
• To get back to the origin measuring system it is the best to use the MDI mode (e.g. MDI-G20-Cycle Start)

G21 Measuring in Millimeter

Format
N... G21

Comments and notes analogous to G20!
G28 Approach Reference Point

Format
N... G28 X... Y... Z...

X, Y, Z Coordinates of the intermediate point.

With G28 the reference point will be approached via an intermediate position (X, Y, Z).
First is the movement to X, Y and Z, then the reference point will be approached. Both movements occur with G00!

The shift G92 will be deleted.
Cutter Radius Compensation

With the cutter radius compensation the control calculates automatically a path parallel to the programmed contour and compensates so the cutter radius.

G40 Cancel Cutter Radius Compensation

The cutter radius compensation will be cancelled by G40. Cancellation is only permitted in combination with a linear traversing movement (G00, G01). G40 can be programmed in the same block like G00 or G01 or in the previous block. Usually G40 will be programmed with the retraction to the tool change point.

G41 Cutter Radius Compensation left

If the tool is (viewed in feed direction) at the left side of the contour to be worked, G41 has to be programmed. For calculating a radius, an H parameter in the offset register (OFFSET) which represents the cutter radius must be programmed and called up with G41 e.g.:

N... G41 H..

Notes
- Direct change between G41 and G42 is not allowed - previous cancellation with G40.
- Selection in combination with G00 or G01 necessary
- Programming an H parameter is necessary unconditionally, the H parameter is effective modally.

G42 Cutter Radius Compensation right

If the tool is (viewed in feed direction) at the right side of the contour to be worked, G42 has to be programmed.

Notes see G41!
Tool paths with selection / cancellation of the cutter radius compensation

Frontal approach or leaving of an edge point

Approach or leaving an edge point at side behind

Approach or leaving an edge point behind

With arcs always the tangent of the end or start point of the arc will be approached.
The approaching path to the contour and the leaving path from the contour must be larger than the tool radius R, otherwise program interruption with alarm.
If contour elements are smaller than the tool radius R, contour violations could happen. The software computes three blocks forward to recognize this contour violations and interrupt the program with an alarm.

Tool paths with program run with active cutter radius compensation

Tool path at an inner edge

Tool path at an outer edge > 90°

Tool path at an outer edge < 90°

With arcs always the tangent of the end or start point of the arc will be approached.
If contour elements are smaller than the cutter radius R, contour violations could happen. The software computes three blocks forward to recognize this contour violations and interrupt the program with an alarm.
G43 Tool Length Compensation
 positive
G44 Tool Length Compensation
 negative

Format:
N... G43/G44 H.

With G43 and G44 a value from the offset register
(OFFSET) can be called up and added to or sub-
tracted from as tool length. To all following Z move-
ments (with active XY plane - G17) in the program
this value will be added to or subtracted from.

Example:
N... G43 H05
The value, which is written into the register under
H05, will be added to all following Z movements as
tool length.

G49 Cancel Tool Length
 Compensation

The positive (G43) or negative (G44) shift will be
cancelled.

G50 Cancel Scale Factor, Mirror
G51 Scale Factor, Mirror

Format:
N... G50
N... G51 X... Y... Z... I... J... K...

With G51 all position data will be calculated in a
scale, until the scale will be deselected with G50.
With X, Y and Z a base point \(P_1 \), will be defined, from
this point all values will be calculated.
With I, J and K for every axis a scale factor (in 1/1000)
can be defined.
If different scale factors will be defined for the axes, the contour will be distorted. Circular movements must not be distorted, otherwise alarm.

Mirroring a Contour

By programming a negative scale a contour will be mirrored around the base point P_B.

By programming I-1000 all X positions will be mirrored around the YZ plane.

By programming J-1000 all Y positions will be mirrored around the ZX plane.

By programming K-1000 all Z positions will be mirrored around the XY plane.
G52 Local Coordinate System

Format:
N... G52 X... Y... Z...

With G52 the actual coordinate zero point can be shifted for the values X, Y, Z.
With this function a sub coordinate system to the existing coordinate system can be created.
G52 is effective blockwise, the resulting shift will be holded, until another shift will be activated.

G53 Machine Coordinate System

Format:
N... G53

The machine zero point is determined by the machine manufacturer (EMCO milling machines: at the left front machine table corner).
Certain working sequences (tool change, measuring position...) always will be done at the same position in the working area.
With G53 the zero offset will be cancelled for one program block and the machine coordinate system is active for this block.

G54 - G59 Zero Offset 1 - 6

Six positions in the working area can be predeter
dined as zero points (e.g. points on fix mounted clamping devices). These zero points can be called up with G54 - G59.
G61 Exact Stop Mode

Format
N... G61

A block will then be proceeded, when the slides are braked to 0 before. Therefore the edges will not be rounded and precise transitions will result. G61 is active, until it will be deselected with G62 or G64.

G63 Thread Cutting Mode On

G63 only with AC95 possible. With AC88 is G63 allowed, but without function. By thread cutting always work with a tap holder with length compensation. Only for PC Mill 100/125/155

Format
N... G63 Z... F...

Z Thread depth
F Thread pitch

• Feed and spindle override switch are not active while G33 (100%).
• G63 works only with the EMCO PC Mill 100/125/155, because the EMCO PC Mill 50/55 has no encoder on the milling spindle.

G64 Cutting mode

Format
N... G62/64

G62 and G64 have the same effect. Before reaching the target point in X direction the Y slide will already be accelerated. This causes a steady movement with contour transitions. The contour transition is not exactly sharp-edged (parabola, hyperbola). The size of the contour transitions is normally within the tolerance of the drawings.
G68 / G69 Coordinate System Rotation

Format:
N... G68 a... b... R...
...
N... G69

G68 Coordinate System Rotation ON
G69 Coordinate System Rotation OFF
α / β Indicates the coordinates of the rotational center in the respective plane.
R Angle of rotation

For example, this function can be used to alter programs by using a rotational command.

The rotation occurs in the actual valid plane (G17, G18 or G19).

Example:

N5 G54
N10 G43 T10 H10 M6
N15 S2000 M3 F300
N20 M98 P030100 ;Subprogram call
N25 G0 Z50
N30 M30

O0100 (Subprogram 0100)
N10 G91 G68 X10 Y10 R22.5
N15 G90 X30 Y10 Z5
N20 G1 Z-2
N25 X45
N30 G0 Z5
N35 M99
Drilling Cycles G73 - G89

Systematic G98/G99

G98 After reaching the drilling depth the tool retracts to the start plane
G99 After reaching the drilling depth the tool retracts to the withdrawal plane- defined by the R parameter

Is no G98 or G99 active, the tool retracts to the start plane. If G99 (Withdrawal to the withdrawal plane) is programmed the address R must be programmed. With G98 R need not to be programmed.

The computation of the R parameter is different with incremental and absolute programming:

Absolute programming (G90):
R defines the height of the withdrawal plane over the actual workpiece zero point.

Incremental programming (G91):
R defines the height of the withdrawal plane related to the last Z position (start position of the drilling cycle). With a negative value for R the withdrawal plane will be below the start position, with a positive value the withdrawal plane will be over the start position.

Sequence of movements

1: The tool traverses with rapid speed from the start position (S) to the plane defined by R (R).
2: Cycle-specific drill machining down to end depth (E).
3: The withdrawal occurs a: with G98 to the start plane (S) and b: with G99 to the withdrawal plane.

Number of repetitions

The K parameter defines the number of repetitions of the cycle.
With absolute programming (G90) it would make no sense to drill several times in the same hole.
With incremental programming (G91) the tool moves on each time for the distances X and Y. This is a simple way of programming rows of borings.

G98 must be activated!
G73 Chip Break Drilling Cycle

Format
N... G98(G99) G73/G83 X... Y... Z... (R...) P... Q... F... K...

The tool dips into the work piece for the infeed Q, drives back 1 mm to break the chips, dips in again etc. until end depth is reached and retracts with rapid feed.

Applications
deep borings, material with bad cutting property

G98(G99) .. Return to starting plane (withdrawal plane)
X, Y Hole position
Z Absolute (incremental) drilling depth
R [mm] Absolute (with G91 incremental) value of the withdrawal plane
P [msec] Dwell at the hole bottom
P1000 = 1 sec
F Feed rate
Q [mm] Cutting division - infeed per cut
K.............. Number of repetitions

G74 Left Tapping Cycle

Only for PC Mill 100/125/155.
With this cycle left threads can be produced. The cycle G74 works like G84 but with reversed turning directions.
See Tapping Cycle G84.
G76 Fine Drilling Cycle

Only for machines with oriented spindle stop.

Format

N...G98(G99) G76 X... Y... Z... (R...) F... Q... K...

This cycle is for enlarging borings with boring and facing heads.

The tool traverses with rapid feed to the withdrawal plane, with the programmed feed to the end depth, the milling spindle will be stopped oriented, the tool traverses with rapid speed horizontally (Q) off the surface (against stop direction) and traverses with rapid speed to the withdrawal plane (G99) or start plane (G98) and traverses back for the value Q to the original position.

G98(G99) .. Retraction to start plane (withdrawal plane)

X, Y Hole position

Z Absolute (incremental) drilling depth

R [mm] Absolute (with G91 incremental) value of the withdrawal plane

F Feed

Q Horizontal traverse-off value

K Number of repetitions

G80 Cancel Drilling Cycles

Format

N... G80

The drilling cycles are modal. They have to be cancelled by G80 or another group 1 command (G00, G01, ...).

G81 Drilling Cycle

Format

N...G98(G99) G81 X... Y... Z... (R...) F... K...

The tool traverses down to end depth with feed speed and retracts with rapid feed.

Application:

Short drillings, material with good cutting properties

G98(G99) .. Retraction to start plane (withdrawal plane)

X, Y Hole position

Z Absolute (incremental) drilling depth

R [mm] Absolute (with G91 incremental) value of the withdrawal plane

F Feed

K Number of repetitions
G82 Drilling Cycle with Dwell

Format

N... G82(G99) G82 X... Y... Z... (R...) P... F... K...

The tool traverses down to end depth with feed speed, dwells turning to clean the hole ground and retracts with rapid feed.

Applications

Short borings, material with good cutting property

G98(G99) .. Return to starting plane (withdrawal plane)
X, Y Hole position
Z Absolute (incremental) drilling depth
R [mm] Absolute (with G91 incremental) value of the withdrawal plane
P [msec] Dwell at the hole bottom
F Feed rate
K Number of repetitions

G83 Withdrawal Drilling Cycle

Format

N... G83(G98) G73/G83 X... Y... Z... (R...) P... Q... F... K...

The tool dips into the work piece for the infeed Q, drives back to the start plane (G98) or to the withdrawal plane (G99), to break the chips and remove it from the hole, traverses with rapid speed until 1 mm over the previous drilling depth, dips in again for the infeed Q etc. until end depth is reached and retracts with rapid feed.

Applications

deep borings, (soft) material with long chips
G98 (G99) .. Return to starting plane (withdrawal plane)

X, Y Hole position
Z Absolute (incremental) drilling depth
R [mm] Absolute (with G91 incremental) value of the withdrawal plane
P [msec] Dwell at the hole bottom
P1000 = 1 sec
F Feed rate
Q [mm] Cutting division - infeed per cut
K Number of repetitions

G84 Tapping Cycle

Only for PC Mill 100/125/155.

Format

N...G98 (G99) G84 X... Y... Z... (R...) F... P... K...

A tapping chuck with length compensation must be used.

Spindle override and feed override will be set fix to 100% while machining.

The tool moves turning clockwise with programmed feed into the workpiece down to drilling depth Z, dwells (P), switches to counterclockwise turning and retracts with feed.

G98 (G99) .. Retraction to start plane (withdrawal plane)

X, Y Hole position
Z Absolute (incremental) tapping depth
R [mm] Absolute (with G91 incremental) value of the withdrawal plane
F Thread pitch (feed per revolution)
P Dwell at thread ground
K Number of repetitions
G85 Reaming Cycle

Format

\[\text{N... G98 (G99) G85 X... Y... Z... (R...) F... K...} \]

The tool traverses down to end depth with feed speed and retracts to the withdrawal plane with feed. Retraction to withdrawal plane with rapid feed depending on G98.

- **G98(G99) ..** Return to starting plane (withdrawal plane)
- **X, Y** Hole position
- **Z** Absolute (incremental) drilling depth
- **R [mm]** Absolute (with G91 incremental) value of the withdrawal plane
- **F** Feed rate
- **K** Number of repetitions

G86 Drilling Cycle with Spindle Stop

Format

\[\text{N... G98(G99) G86 X... Y... Z... (R...) F...} \]

The tool traverses down to end depth with feed speed. At the hole ground the spindle stops and the tool retracts with rapid feed.

- **G98(G99) ..** Return to starting plane (withdrawal plane)
- **X, Y** Hole position
- **Z** Absolute (incremental) drilling depth
- **R [mm]** Absolute (with G91 incremental) value of the withdrawal plane
- **F** Feed rate
- **K** Number of repetitions
G87 Back Pocket Drilling Cycle

Only for machines with oriented spindle stop

Format

N... G87 X... Y... Z... R... Q... F...

Existing drillings can be enlarged in one direction with a boring or facing head.

- The tool will be positioned in X and Y and stopped oriented.
- It will be traversed horizontally for the distance Q against the stop direction of the oriented stop. The value Q must be larger than the tool diameter to avoid collisions.
- The tool traverses to the depth R (no machining).
- The tool traverses back horizontally for the distance Q on the position X, Y (machining).
- The tool traverses vertical to the height Z (machining).
- At height Z the spindle stops oriented, traverses horizontally for the distance Q against the stop direction of the oriented stop (into the existing drilling) and with rapid feed out of the drilling.
- The tool traverses horizontally for the value Q back to the position X, Y.

G99 can not be programmed, the tool always retracts to the start plane.

X, Y Hole position
Z Absolute (incremental) drilling depth
R [mm] Back drilling depth
F Feed rate

G88 Drilling Cycle with Program Stop

Format

N... G88 X... Y... Z... (R...) P... F... M...

The tool traverses with feed rate to the programmed end depth. At the end depth the program will be stopped after the programmed dwell, retraction occurs manually.

X, Y Hole position
Z Absolute (incremental) drilling depth
R [mm] Absolute (with G91 incremental) value of the withdrawal plane
P [msec] Dwell at end depth:
 P1000 = 1 sec
F Feed rate
G89 Reaming Cycle with Dwell

See G85

The tool traverses with the programmed feed rate to the end depth and dwells (P). Retraction to the withdrawal plane occurs with feed rate, depending on G98 traverses the tool with rapid speed to the start plane.

G90 Absolute Programming

Format
N... G90

Notes
• A direct change between G90 and G91 is allowed also blockwise
• G90 (G91) can be programmed in combination with other G functions.
 (N... G90 G00 X... Y... Z...).

G91 Incremental Programming

Format
N... G91

Notes see G90.

G92 Coordinate System Setting

Format
N... G92 X... Z... (Coordinate System Setting)

Sometimes it is necessary to shift the zero point within a part program. This occurs with G92.

This zero offset is effective modally and will not be cancelled by M30 or RESET. Therefore it is necessary to activate the previous zero point before program end.

G94 Feed per Minute

With G94 all F (feed) values are in mm/min.

Format
N... G94 F...

G95 Feed per Revolution

Only PC MILL 100/125/155
With G95 all F (feed) values are in mm/rev.

Format
N... G95 F...

G97 Revolutions per Minute

With G97 all S values are in rev/min.

Format
N... G97 S...

G98 Retraction to the Start Plane

G99 Retraction to the Withdrawal Plane

see "Drilling Cycles G73 - G89".
Description of M Commands

M00 Programmed Stop
This command effects a machining stop within a part program. The milling spindle, feeds and coolant will be switched off. The machine door can be opened without releasing an alarm.

With “NC START” the program run can be continued. After that the main drive will be switched on with all values which were valid before.

M01 Programmed Stop, Conditional
M01 works like M00, when OPT. STOP is active (display OPT in the first line at the screen). If OPT. STOP is not active, M01 has no effect.

With “NC START” the program run can be continued. After that the main drive will be switched on with all values which were valid before.

M02 Main Program End
M02 works like M30.

M03 Milling Spindle ON Clockwise
The spindle will be switched on provided that a cutting speed has been programmed, the machine doors are closed and a workpiece is correctly clamped. M03 must be used for all right hand cutting tools.

M04 Milling Spindle ON Counterclockwise
The same conditions as described under M03 apply here. M04 must be used for all left hand cutting tools.

M05 Milling Spindle OFF
The main drive is braked electrically. At the program end the milling spindle is automatically switched off.

M06 Tool Change
Only for machines with tool turret. The previously with the T word selected tool will be swivelled in. The T word describes the tool turret station number.

Example:
N100 T04 M06
N110 G43 H4
In the block 100 the tool will be selected by T04 and swivelled in with M06. In the block 110 the length of the tool (entered in H4) will be considered for all following traverse movements (tool length compensation). After that the main drive will be switched on with all values which were valid before.

M08 Coolant ON
Only for EMCO PC Mill 100/125/155. The coolant will be switched on.

M09 Coolant OFF
Only for EMCO PC Mill 100/125/155. The coolant will be switched off.

M27 Swivel Dividing Head
Only for accessory dividing head. The dividing head will be swivelled for one step (step angle mechanically adjusted).

M30 Main Program End
With M30 all drives will be switched off and the control will be reset to program start.

M71 Puff blowing ON
Only for accessory puff blowing device. The puff blowing device will be switched on.

M72 Puff blowing OFF
Only for accessory puff blowing device. The puff blowing device will be switched off.
M98 Subprogram Call

Format

N... M98 P...

P The first four digits from the right determine the subprogram number, the other digits the number of repetitions.

Notes

- M98 can be designated in the same block as the movement command (e.g. G01 X25 M98 P1235001)
- When the count of repetitions is not specified, the subprogram is called once (M98 P5001)
- When the programmed subroutine does not exist an alarm occurs.
- A two loop subprogram call can be executed.

M99 Subprogram End, Jump Instruction

Format

N... M99 P...

M99 in the main program

Without jumping address:
Jump to the program start.
With jumping address Pxxxx:
Jump on block no. xxxx

M99 in the subprogram

Without jumping address:
Jump to the calling up program, on the next block after the calling up block (see drawing).
With jumping address Pxxxx:
Jump to the calling up program on block no. xxxx

Note

M99 must be the last command in the subprogram.
G: Flexible NC programming

Variables and arithmetic parameters

By using variables instead of fixed values, a program can be configured more flexibly. Thus, you can react to signals, such as e.g. measuring values, or the same program can be used for different geometries by using variables as nominal value. Together with variable calculation and program jumps you get the possibility to create a highly-flexible program archive and thus save programming time.

Local and global variables can be read and written. All other variables can only be read.

Local variables can only be used in that macro in which they are defined.

Global variables can be used in every macro irrespective of the macro in which they were defined.

Calculating with variables

With the four basic arithmetic operations the usual mathematic notation is valid.

The term at the operator's right can contain constants and/or variables combined by functions.

Each variable can be replaced again by an arithmetic term in square brackets or by a constant.

Example

#1=#1[#2]

During the calculation the limitation is valid that the execution of the calculation is carried out from left to right without observance of the calculation rule point before line.

Example

#1=#2*3+#5/2
Control structures

In programs the control sequence can be changed by IF and GOTO instructions. Three types of branchings are possible:

- IF[<condition>] THEN
- IF[<condition>] GOTO <n>
- GOTO <destination>

IF[<Condition>] THEN

After IF a provisory term must be indicated. If the provisory term applies, a determined macro instruction is carried out. Only one macro instruction can be carried out.

Example

With equal values of #1 and #2 the value 5 is allocated to #3.

IF [#1 EQ #2] THEN #3 = 5

IF[<Condition>] GOTO <n>

After IF a provisory term must be indicated. If the provisory term applies, the branching is carried out to block number n. Otherwise the subsequent block is carried out.

Example

If the value of the variable #1 is greater than 10, the branching is carried out to block number N4. Otherwise the subsequent block is carried out.

IF [#1 GT 10] GOTO 4

GOTO <n>

The jump command GOTO can also be programmed without condition. A variable or constant can be used as a branch destination. With a variable the number can be replaced again by a calculation term in square brackets.

Example

Jump to block number 3

GOTO 3

Example

Jump to variable #6

GOTO#6

Relational operators

Relational operators consist of two letters and are used to determine, in comparison with two values, if these are equal or if one value is greater and/or less than the other.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>Equal (=)</td>
</tr>
<tr>
<td>NE</td>
<td>Unequal (≠)</td>
</tr>
<tr>
<td>GT</td>
<td>Greater than (>)</td>
</tr>
<tr>
<td>GE</td>
<td>Greater than or equal (≥)</td>
</tr>
<tr>
<td>LT</td>
<td>Less than (<)</td>
</tr>
<tr>
<td>LE</td>
<td>Less than or equal (≤)</td>
</tr>
</tbody>
</table>

The expressions to be compared can be variable n or constants. A variable can be replaced again by a calculation term in square brackets.

Example

IF[#12 EQ 1] GOTO10

Comprising macro programming examples:

IF[#1000 EQ 1] GOTO10
IF[#10] NE #0 GOTO#1
IF[1 EQ 1] THEN #2 = 5
IF[#1/#[4+[#2/2]] GT #20] THEN#10 = #1*5+#7
H: Alarms and Messages

Machine Alarms 6000 - 7999
These alarms will be triggered by the machines.
There are different alarms for the different machines.
The alarms 6000 - 6999 normally must be confirmed with RESET. The alarms 7000 - 7999 are messages which normally will disappear when the releasing situation is finished.

PC MILL 50 / 55 / 100 / 105 / 125 / 155
Concept MILL 55 / 105 / 155

6000: EMERGENCY OFF
The EMERGENCY OFF key was pressed. Remove the endangering situation and restart machine and software.

6001: PLC-CYCLE TIME EXCEEDING
Contact EMCO Service.

6002: PLC - NO PROGRAM CHARGED
Contact EMCO Service.

6003: PLC - NO DATA UNIT
Contact EMCO Service.

6004: PLC - RAM MEMORY FAILURE
Contact EMCO Service.

6005: OVERHEAT BRAKEMODUL
Main drive was braked too often, large changes of speed within a short time. E4.2 active

6006: OVERLOAD BRAKE RESISTOR
see 6005

6007: SAFETY CIRCUIT FAULT
Axis and main drive contactor with machine switched off not disabled. Contactor got stuck or contact error. E4.7 was not active during switch-on.

6009: SAFETY CIRCUIT FAULT
Defective step motor system. A running CNC program will be interrupted, the auxiliary drives will be stopped, the reference position will be lost. Contact EMCO Service.

6010: DRIVE X-AXIS NOT READY
The step motor board is defective or too hot, a fuse or cabling is defective. A running program will be stopped, the auxiliary drives will be switched off, the reference position will be lost. Check fuses or contact EMCO service.

6011: DRIVE Y-AXIS NOT READY
see alarm 6010.

6012: DRIVE Z-AXIS NOT READY
see alarm 6010.

6013: MAIN DRIVE NOT READY
Main drive power supply defective, main drive too hot, fuse defective. A running program will be stopped, the auxiliary drives will be switched off. Check fuses or contact EMCO Service.

6014: NO MAIN SPINDLE SPEED
This will be released, when the spindle speed is lower than 20 rpm because of overload. Alter cutting data (feed, infeed, spindle speed). The CNC program will be aborted, the auxiliary drives will be stopped.

6019: VICE TIME EXCEED
The electric vice has not reached a stop position within 30 seconds. The control or the clamping device board are defective, the vice is stuck. Adjust the proximity switches of the stop position.

6020: VICE FAILURE
When the electric vice is closed, the signal "clamping device clamped" of the clamping device board has failed. The control, the clamping device board or the wiring are defective.
6022: CLAMPING DEVICE BOARD DEFECTIVE
The signal "clamping device clamped" is constantly released, although no command has been given.
Replace the board.

6024: MACHINE DOOR OPEN
The door was opened while a machine movement.
The program will be aborted.

6027: DOOR LIMIT SWITCH DEFECTIVE
The limit switch of the automatic door is displaced, defective, wrong cabled.
Contact EMCO service.

6028: DOOR TIMEOUT
The automatic door sticks, the pressured air supply is insufficient, the limit switch is displaced.
Check door, pressured air supply, limit switch or contact EMCO service.

6030: NO PART CLAMPED
No workpiece inserted, vice cheek displaced, control cam displaced, hardware defective.
Adjust or contact EMCO service.

6040: TOOL TURRET INDEX FAILURE
After WZW procedure drum pressed down by Z-axis. Spindle position wrong or mechanical defect. E4.3=0 in lower state

6041: TOOL CHANGE TIMEOUT
Tool drum sticks (collision?), main drive not ready, fuse defective, hardware defective.
A running CNC program will be stopped.
Check for collisions, check fuses or contact EMCO service.

6043-6046: TOOL DISK POSITION FAULT
Position error of main drive, error of position supervising (inductive proximity switch defective or disadjusted, drum allowance), fuse defective, hardware defective.
The Z axis could have been slipped out of the toothing while the machine was switched off.
A running CNC program will be stopped.
Contact EMCO service.

6047: TOOL DISK UNLOCKED
Tool drum turned out of locked position, inductive proximity switch defective or disadjusted, fuse defective, hardware defective.
A running CNC program will be interrupted.
Contact EMCO service.

6048: DIVIDING TIME EXCEEDED
Dividing head sticks, insufficient pressured air supply, hardware defective.
Check for collision, check pressured air supply or contact EMCO service.

6049: INTERLOCKING TIME EXCEEDED
see alarm 6048

6050: M25 AT RUNNING MAIN SPINDLE
Cause: Programming mistake in NC program.
A running program will be aborted.
The auxiliary drives will be switched off.
Remedy: Correct NC program

6064: DOOR AUTOMATIC NOT READY
Cause: pressure failure automatic door automatic door sticks mechanically limit switch for open end position defect security print circuits defect cabling defective fuses defective
A running program will be aborted.
The auxiliary drives will be switched off.
Remedy: service automatic door

6069: CLAMPING FOR TANI NOT OPEN
When opening the clamping pressure switch does not fall within 400ms. Pressure switch defective or mechanical problem. E22.3

6070: PRESSURE SWITCH FOR TANI MIS-SING
When closing the clamping pressure switch does not respond. No compressed air or mechanical problem. E22.3

6071: DIVIDING DEVICE NOT READY
Servo Ready Signal from frequency converter missing. Excess temperature drive TANI or frequency converter not ready for operation.
6072: VICE NOT READY
Attempt to start the spindle with an open vice or without clamped workpiece.
Vice sticks mechanically, insufficient compressed air supply, compressed air switch defective, fuse defective, hardware defective.
Check the fuses or contact EMCO service.

6073: DIVIDING DEVICE NOT READY
Cause: locking switch defective
cabling defective
fuses defective
A running program will be aborted.
The auxiliary drives will be switched off.
Remedy: service automatic dividing device
lock the dividing device

6074: DIVIDING TIME EXCEEDED
Cause: dividing device sticks mechanically
locking switch defective
cabling defective
fuses defective
insufficient compressed-air supply.
A running program will be aborted.
The auxiliary drives will be switched off.
Remedy: Check for collision, check the compressed-air supply or contact the EMCO service.

6075: M27 AT RUNNING MAIN SPINDLE
Cause: Programming mistake in NC program.
A running program will be aborted.
The auxiliary drives will be switched off.
Remedy: Correct NC program

7000: INVALID TOOL NUMBER PROGRAMMED
The tool position was programmed larger than 10.
The CNC program will be stopped.
Interrupt program with RESET and correct the program.

7001: NO M6 PROGRAMMED
For an automatic tool change you also have to program a M6 after the T word.

7007: FEED STOP!
The axes have been stopped by the robotics interface (robotics entry FEEDHOLD).

7017: REFERENCE MACHINE
Approach the reference point.
When the reference point is not active, manual movements are possible only with key switch at position "setting operation".

7018: TURN KEY SWITCH
With NC-Start the key switch was in position "setting operation".
NC-Start is locked.
Turn the key switch in the position "automatic" to run a program.

7020: SPECIAL OPERATION MODE ACTIVE
Special operation mode: The machine door is opened, the auxiliary drives are switched on, the key switch is in position "setting operation" and the consent key is pressed.
Manual traversing the axes is possible with open door. Swivelling the tool turret is not possible with open door. Running a CNC program is possible only with standing spindle (DRYRUN) and SINGLE block operation.
For safety: If the consent key is pressed for more than 40 sec. the function of this key is interrupted, the consent key must be released and pressed again.

7021: INITIALIZE TOOL TURRET
The tool turret operating was interrupted.
No traversing operation is possible.
Press tool turret key in JOG operation. Message occurs after alarm 6040.

7022: INITIALIZE TOOL TURRET!
see 7021

7023: WAITING TIME MAIN DRIVE!
The LENZE frequency converter has to be separated from the mains supply for at least 20 seconds before you are allowed to switch it on again. This message will appear when the door is quickly opened/ closed (under 20 seconds).

7038: LUBRICATION SYSTEM FAULT
The pressure switch is defective or gagged.
NC-Start is locked. This can be reset only by switching off and on the machine.
Contact EMCO service.

7039: LUBRICATION SYSTEM FAULT
Not enough lubricant, the pressure switch is defective.
NC-Start is locked.
Check the lubricant and lubricate manually or contact EMCO service.
ALARMS AND MESSAGES

7040: MACHINE DOOR OPEN
The main drive can not be switched on and NC-Start can not be activated (except special operation mode)
Close the machine to run a program.

7042: INITIALIZE MACHINE DOOR
Every movement and NC-Start are locked.
Open and close the machine door to initialize the safety circuits.

7043: PIECE COUNT REACHED
A predetermined number of program runs was reached. NC-Start is locked. Reset the counter to continue.

7050: NO PART CLAMPED
After switching on or after an the vice is neither at the open position nor at the closed position. NC-Start is locked.
Traverse the vice manually on a valid end position.

7051: DIVIDING HEAD NOT LOCKED!
Either the dividing head is in an undefined position after the machine has been switched on, or the locking signal after a dividing process is missing.
Initiate the dividing process, check, respectively adjust the proximity switch for locking.

7054: VICE OPEN
Cause: the workpiece is not clamped
When switching on the main spindle with M3/M4 alarm 6072 (vice not ready) will be released.
Remedy: Clamp

7055: OPEN TOOL CLAMPING SYSTEM
A tool is clamped in the main spindle and the control does not recognize the corresponding T number.
Eject the tool from the main spindle when the door is open by means of the PC keys "Strg" and " 1 ".

7056: SETTING DATA INCORRECT
An invalid tool number is stored in the setting data.
Delete the setting data in the machine directory xxxxx.pls.

7057: TOOLHOLDER OCCUPIED
The clamped tool cannot be positioned in the tool turret since the position is occupied.
Eject the tool from the main spindle when the door is open by means of the PC keys "Strg" and " 1 ".

7058: RETRACTING THE AXES
The position of the tool turret arm cannot be clearly defined during the tool change.
Open the machine door, push the tool turret magazine backwards to the stop. Move the milling head in the JOG mode upwards to the Z reference switch and then traverse the reference point.

7270: OFFSET COMPENSATION ACTIVE!
Only with PC-MILL 105
Offset compensation activated by the following operation sequence.
- Reference point not active
- Machine in reference mode
- Key switch in manual operation
- Press STRG (or CTRL) and simultaneously 4
This must be carried out if prior to the tool change procedure spindle positioning is not completed (tolerance window too large)

7271: COMPENSATION FINISHED, DATA SAVED!
see 7270
ALARMS AND MESSAGES

6000: EMERGENCY OFF
The EMERGENCY OFF key was pressed. The reference position will be lost, the auxiliary drives will be switched off.
Remove the endangering situation and restart machine and software.

6001: PLC-CYCLE TIME EXCEEDING
The auxiliary drives will be switched off. Contact EMCO Service.

6002: PLC - NO PROGRAM CHARGED
The auxiliary drives will be switched off. Contact EMCO Service.

6003: PLC - NO DATA UNIT
The auxiliary drives will be switched off. Contact EMCO Service.

6004: PLC - RAM MEMORY FAILURE
The auxiliary drives will be switched off. Contact EMCO Service.

6008: MISSING CAN SUBSCRIBER
The SPS-CAN board is not identified by the control. Check the interface cable and the power supply of the CAN board.

6009: SAFETY CIRCUIT FAULT
Defective step motor system. A running CNC program will be interrupted, the auxiliary drives will be stopped, the reference position will be lost.
Contact EMCO Service.

6010: DRIVE X-AXIS NOT READY
The step motor board is defective or too hot, a fuse is defective, over- or undervoltage from mains.
A running program will be stopped, the auxiliary drives will be switched off, the reference position will be lost.
Check fuses or contact EMCO Service.

6012: DRIVE Z-AXIS NOT READY
see 6010.

6013: MAIN DRIVE NOT READY
Main drive power supply defective or main drive too hot, fuse defective, over- or undervoltage from mains.
A running program will be stopped, the auxiliary drives will be switched off.
Check fuses or contact EMCO Service.

6014: NO MAIN SPINDLE SPEED
This alarm will be released, when the spindle speed is lower than 20 rpm because of overload. Alter cutting data (feed, infeed, spindle speed). The CNC program will be aborted, the auxiliary drives will be switched off.

6015: NO DRIVEN TOOL SPINDLE SPEED
see 6014.

6016: AUTOMATIC TOOL TURRET SIGNAL COUPLED MISSING

6017: AUTOMATIC TOOL TURRET SIGNAL UNCOUPLED MISSING
In the tool turret that can be coupled, the position of the coupling and uncoupling magnet is monitored by means of two proximity switches. It has to be made sure that the coupling is in the rear stop position so that the tool turret can get to the next tool position. Equally, during operation with driven tools the coupling has to be safe in the front stop position.
Check and adjust the cables, the magnet and the stop position proximity switches.

6021: COLLET TIME OUT
During closing of the clamping device the pressure switch has not reacted within one second.

6022: CLAMPING DEVICE BOARD DEFECTIVE
The signal "clamping device clamped" is constantly released, even though no command has been given. Replace the board.

6023: COLLET PRESSURE MONITORING
The pressure switch turns off when the clamping device is closed (compressed air failure for more than 500ms).
ALARMS AND MESSAGES

6024: MACHINE DOOR OPEN
The door was opened while a machine movement. The program will be aborted.

6025: GEARBOX COVER NOT CLOSED
The gearbox cover was opened while a machine movement. A running CNC program will be aborted. Close the cover to continue.

6027: DOOR LIMIT SWITCH DEFECTIVE
The limit switch of the automatic door is displaced, defective, wrong cabled. Contact EMCO service.

6028: DOOR TIMEOUT
The automatic door sticks, the pressured air supply is insufficient, the limit switch is displaced. Check door, pressured air supply, limit switch or contact EMCO service.

6029: TAILSTOCK QUILL TIME EXCEED
The tailstock quill does not reach a final position within 10 seconds. Adjust the control and the stop position proximity switches, or the tailstock quill is stuck.

6030: NO PART CLAMPED
No workpiece inserted, vice cheek displaced, control cam displaced, hardware defective. Adjust or contact EMCO service.

6031: QUILL FAILURE

6032: TOOL CHANGE TIMEOUT
see alarm 6041.

6033: TOOL TURRET SYNC ERROR
Hardware defective. Contact EMCO service.

6037: CHUCK TIMEOUT
The pressure switch does not react within one second when the clamping device is closed.

6039: CHUCK PRESSURE FAILURE
The pressure switch turns off when the clamping device is closed (compressed air failure for more than 500ms).

6040: TOOL TURRET INDEX FAILURE
The tool turret is in no locked position, tool turret sensor board defective, cabling defective, fuse defective. A running CNC program will be stopped. Swivel the tool turret with the tool turret key, check fuses or contact EMCO service.

6041: TOOL CHANGE TIMEOUT
Tool drum sticks (collision?), fuse defective, hardware defective. A running CNC program will be stopped. Check for collisions, check fuses or contact EMCO service.

6042: TOOL TURRET OVERHEAT
Tool turret motor too hot. With the tool turret a max. of 14 swivel procedures a minute may be carried out.

6043: TOOL CHANGE TIMEOUT
Tool drum sticks (collision?), fuse defective, hardware defective. A running CNC program will be stopped. Check for collisions, check fuses or contact EMCO service.

6045: TOOL TURRET SYNC MISSING
Hardware defective. Contact EMCO service.

6046: TOOL TURRET ENCODER FAULT
Fuse defective, hardware defective. Check fuses or contact EMCO service.

6048: CHUCK NOT READY
Attempt to start the spindle with open chuck or without clamped workpiece. Chuck sticks mechanically, insufficient pressured air supply, fuse defective, hardware defective. Check fuses or contact EMCO service.

6049: COLLET NOT READY
see 6048

6050: M25 DURING SPINDLE ROTATION
With M25 the main spindle must stand still (consider run-out time, evtl. program a dwell)

6055: NO PART CLAMPED
This alarm occurs when with rotating spindle the clamping device or the tailstock reach the end position. The workpiece has been pushed out of the chuck or has been pushed into the chuck by the tailstock. Check clamping device settings, clamping forces, alter cutting data.

6056: QUILL NOT READY
Attempt to start the spindle or to move an axis or to swivel the tool turret with undefined tailstock position. Tailstock is locked mechanically (collision), insufficient pressured air supply, fuse defective, magnetic switch defective. Check for collisions, check fuses or contact EMCO service.
ALARMS AND MESSAGES

6057: M20/M21 DURING SPINDLE ROTATION
With M20/M21 the main spindle must stand still (consider run-out time, evtl. program a dwell)

6058: M25/M26 DURING QUILL FORWARD
To actuate the clamping device in an NC program with M25 or M26 the tailstock must be in back end position.

6059: C-AXIS SWING IN TIMEOUT
C-axis does not swivel in within 4 seconds.
Reason: not sufficient air pressure, and/or mechanics stuck.

6060: C-AXIS INDEX FAILURE
When swivelling in the C-axis the limit switch does not respond.
Check pneumatics, mechanics and limit switch.

6064: AUTOMATIC DOOR NOT READY
Door sticks mechanically (collision), insufficient pressured air supply, limit switch defective, fuse defective.
Check for collisions, check fuses or contact EMCO service.

6065: LOADER MAGAZINE FAILURE
Loader not ready.
Check if the loader is switched on, correctly connected and ready for operation and/or disable loader (WinConfig).

6066: CLAMPING DEVICE FAILURE
No compressed air at the clamping device
Check pneumatics and position of the clamping device proximity detectors.

6067: NO COMPRESSED AIR
Turn the compressed air on, check the setting of the pressure switch.

7000: INVALID TOOL NUMBER PROGRAMMED
The tool position was programmed larger than 8.
The CNC program will be stopped.
Interrupt program with RESET and correct the program.

7007: FEED HOLD
In the robotic mode a HIGH signal is at input E3.7.
Feed Stop is active until a low signal is at E3.7.

7017: REFERENCE MACHINE
Approach the reference point.
When the reference point is not active, manual movements are possible only with key switch at position "setting operation".

7018: TURN KEY SWITCH
With NC-Start the key switch was in position "setting operation".
NC-Start is locked.
Turn the key switch in the position "automatic" to run a program.

7019: PNEUMATIC LUBRICATION MONITORING!
Refill pneumatic oil

7020: SPECIAL OPERATION MODE ACTIVE
Special operation mode: The machine door is opened, the auxiliary drives are switched on, the key switch is in position "setting operation" and the consent key is pressed.
Manual traversing the axes is possible with open door. Swivelling the tool turret is possible with open door. Running a CNC program is possible only with standing spindle (DRYRUN) and SINGLE block operation.
For safety: If the consent key is pressed for more than 40 sec. the function of this key is interrupted, the consent key must be released and pressed again.

7021: TOOL TURRET NOT LOCKED
The tool turret operating was interrupted.
NC start and spindle start are locked. Press the tool turret key in the RESET status of the control.

7022: COLLECTION DEVICE MONITORING
Time exceed of the swivelling movement.
Check the pneumatics, respectively whether the mechanical system is jammed (possibly a workpiece is jammed).

7023: ADJUST PRESSURE SWITCH!
During opening and closing of the clamping device the pressure switch has to turn off and on once.
Adjust the pressure switch. This alarm does not exist any more for versions starting with PLC 3.10.

7024: ADJUST CLAMPING DEVICE PROXIMITY SWITCH!
When the clamping device is open and the position stop control is active, the respective proximity switch has to feed back that the clamping device is "Open".
Check and adjust the clamping device proximity switch, check the cables.
ALARMS AND MESSAGES

7025 WAITING TIME MAIN DRIVE!
The LENZE frequency converter has to be separated from the mains supply for at least 20 seconds before you are allowed to switch it on again. This message will appear when the door is quickly opened/closed (under 20 seconds).

7038: LUBRICATION SYSTEM FAULT
The pressure switch is defective or gagged. NC-Start is locked. This alarm can be reset only by switching off and on the machine. Contact EMCO service.

7039: LUBRICATION SYSTEM FAULT
Not enough lubricant, the pressure switch is defective. NC-Start is locked. Check the lubricant and lubricate manually or contact EMCO service.

7040: MACHINE DOOR OPEN
The main drive can not be switched on and NC-Start can not be activated (except special operation mode)
Close the machine to run a program.

7041: GEARBOX COVER OPEN
The main spindle cannot be switched on and NC start cannot be activated.
Close the gearbox cover in order to start a CNC program.

7042: INITIALIZE MACHINE DOOR
Every movement and NC-Start are locked.
Open and close the machine door to initialize the safety circuits.

7043: PIECE COUNT REACHED
A predetermined number of program runs was reached. NC-Start is locked. Reset the counter to continue.

7048: CHUCK OPEN
This message shows that the chuck is open. It will disappear if a workpiece will be clamped.

7049: CHUCK - NO PART CLAMPED
No part is clamped, the spindle can not be switched on.

7050: COLLET OPEN
This message shows that the collet is open. It will disappear if a workpiece will be clamped.

7051: COLLET - NO PART CLAMPED
No part is clamped, the spindle can not be switched on.

7052: QUILL IN UNDEFINED POSITION
The tailstock is in no defined position. All axis movements, the spindle and the tool turret are locked.
Drive the tailstock in back end position or clamp a workpiece with the tailstock.

7053: QUILL - NO PART CLAMPED
The tailstock reached the front end position. Traverse the tailstock back to the back end position to continue.

7054: NO PART CLAMPED
No part clamped, switch-on of the spindle is locked.

7055: CLAMPING DEVICE OPEN
This message indicates that the clamping device is not in clamping state. It disappears as soon as a part is clamped.
Axis Controller Alarms

8000 Fatal Error AC
8100 Fatal init error AC
Cause: Internal error
Remedy: Restart software or reinstall when necessary, report to EMCO, if repeatable.

8101 Fatal init error AC
see 8101.

8102 Fatal init error AC
see 8101.

8103 Fatal init error AC
see 8101.

8104 Fatal system error AC
see 8101.

8105 Fatal init error AC
see 8101.

8106 No PC-COM card found
Cause: PC-COM board can not be accessed (ev. not mounted).
Remedy: Mount board, adjust other address with jumper

8107 PC-COM card not working
see 8106.

8108 Fatal error on PC-COM card
see 8106.

8109 Fatal error on PC-COM card
see 8106.

8110 PC-COM init message missing
Cause: Internal error
Remedy: Restart software or reinstall when necessary, report to EMCO, if repeatable.

8111 Wrong configuration of PC-COM
see 8110.

8113 Invalid data (pccom.hex)
see 8110.

8114 Programming error on PC-COM
see 8110.

8115 PC-COM packet acknowledge missing
see 8110.

8116 PC-COM startup error
see 8110.

8117 Fatal init data error (pccom.hex)
see 8110.

8118 Fatal init error AC
see 8110, ev. insufficient RAM memory

8119 PC interrupt no. not valid
Cause: The PC interrupt number can not be used.
Remedy: Find out free interrupt number in the Windows95 system control (allowed: 5, 7, 10, 11, 12, 3, 4 und 5) and enter this number in WinConfig.

8120 PC interrupt no. unmaskable
see 8119.

8121 Invalid command to PC-COM
Cause: Internal error or defective cable
Remedy: Check cables (screw it), Restart software or reinstall when necessary, report to EMCO, if repeatable.

8122 Internal AC mailbox overrun
Cause: Internal error
Remedy: Restart software or reinstall when necessary, report to EMCO, if repeatable.

8123 Open error on record file
Cause: Internal error
Remedy: Restart software or reinstall when necessary, report to EMCO, if repeatable.

8124 Write error on record file
Cause: Internal error
Remedy: Restart software or reinstall when necessary, report to EMCO, if repeatable.

8125 Invalid memory for record buffer
Cause: Insufficient RAM, record time exceeding.
Remedy: Restart software, ev. remove drivers etc. to gain more RAM, reduce record time.

8126 AC Interpolation overrun
Cause: Ev. insufficient computer performance.
Remedy: Set a longer interrupt time in WinConfig. This may result in poorer path accuracy.

8127 Insufficient memory
Cause: Insufficient RAM
Remedy: Close other programs, restart software, ev. remove drivers etc. to gain more RAM.

8128 Invalid message to AC
Cause: Internal error
Remedy: Restart software or reinstall when necessary, report to EMCO, if repeatable.

8129 Invalid MSD data - axisconfig.
see 8128.

8130 Internal init error AC
see 8128.

8130 Internal init error AC
see 8128.

8132 Axis accessed by multiple channels
see 8128.

8133 Insufficient NC block memory AC
see 8128.

8134 Too much center points programmed
see 8128.

8135 No centerpoint programmed
see 8128.

8136 Circle radius too small
see 8128.

8137 Invalid for Helix specified
Cause: Wrong axis for helix. The combination of linear and circular axes does not match.
Remedy: Program correction.

8140 Maschine (ACIF) not responding
Cause: Machine off or not connected.
Remedy: Switch on machine or connect.

8141 Internal PC-COM error
Cause: Internal error
Remedy: Restart software or reinstall when necessary, report to EMCO, if repeatable.

8142 ACIF Program error
Cause: Internal error
Remedy: Restart software or reinstall when necessary, report to EMCO, if repeatable.

8143 ACIF packet acknowledge missing
see 8142.

8144 ACIF startup error
see 8142.

8145 Fatal init data error (acif.hex)
see 8142.

8146 Multiple request for axis
see 8142.

8147 Invalid PC-COM state (DPRAM)
see 8142.

8148 Invalid PC-COM command (CNo)
see 8142.

8149 Invalid PC-COM command (Len)
see 8142.

8150 Fatal ACIF error
see 8142.

8151 AC Init Error (missing RPG file)
see 8142.

8152 AC Init Error (RPG file format)
see 8142.

8153 FPGA program timeout on ACIF
see 8142.

8154 Invalid Command to PC-COM
see 8142.

8155 Invalid FPGA packet acknowledge
see 8142 or hardware error on ACIF board (contact EMCO Service).

8156 Sync within 1.5 revol. not found
see 8142 or Bero hardware error (contact EMCO Service).

8157 Data record done
see 8142.

8158 Bero width too large (referencing)
see 8142 or Bero hardware error (contact EMCO Service).

8159 Function not implemented
Bedeutung: In normal operation this function can not be executed

8160 Axis synchronization lost axis 3..7
Cause: Axis spins or slide is locked, axis synchronisation was lost
Remedy: Approach reference point

8161 X-Axis synchronization lost
Step loss of the step motor. Causes:
- Axis mechanically blocked
- Axis belt defective
- Distance of proximity detector too large (>0,3mm)
or proximity detector defective
- Step motor defective

8162 Y-Axis synchronization lost
see 8161

8163 Z-Axis synchronization lost
see 8161

8164 Software limit switch max axis 3..7
Cause: Axis is at traverse area end
Remedy: Retract axis

8168 Software limit overtravel axis 3..7
Cause: Axis is at traverse area end
Remedy: Retract axis

8172 Communication error to machine
Cause: Internal error
Remedy: Restart software or reinstall when necessary, report to EMCO, if repeatable.

8173 INC while NC program is running
Remedy: Stop the program with NC stop or with Reset. Traverse the axis.

8174 INC not allowed
Cause: At the moment the axis is in motion.
Remedy: Wait until the axis stops and then traverse the axis.

8175 MSD file could not be opened
Cause: Internal error
Remedy: Restart software oder bei Bedarf neu installieren, report to EMCO, if repeatable.

8176 PLS file could not be opened
see 8175.

8177 PLS file could not be accessed
see 8175.

8178 PLS file could not be written
see 8175.
8179 ACS file could not be opened
see 8175.

8180 ACS file could not be accessed
see 8175.

8181 ACS file could not be written
see 8175.

8183 Gear too high
Cause: The selected gear step is not allowed at the machine.

8184 Invalid interpolaton command

8185 Forbidden MSD data change
see 8175.

8186 MSD file could not be opened
see 8175.

8187 PLC program error
see 8175.

8188 Gear command invalid
see 8175.

8189 Invalid channel assignement
see 8175.

8190 Invalid channel within message
see 8175.

8191 Invalid jog feed unit
Cause: The machine does not support the rotation feed in the JOG operating mode.
Remedy: Order a software update from EMCO.

8192 Invalid axis in command
see 8175.

8193 Fatal axis in command
see 8175.

8194 Thread without length
Cause: The programmed target coordinates are identical to the starting coordinates.
Remedy: Correct the target coordinates.

8195 No thread slope in leading axis
Remedy: Program thread pitch

8196 Too manny axis for thread
Remedy: Program max. 2 axes for thread.

8197 Thread not long enough
Cause: Thread length too short.
With transition from one thread to the other the length of the second thread must be sufficient to produce a correct thread.
Remedy: Longer second thread or replace it by a linear interpolation (G1).

8198 Internal error (to many threads)
see 8175.

8199 Internal error (thread state)
Cause: Internal error
Remedy: Restart software or reinstall when necessary, report to EMCO, if repeatable.

8200 Thread without spindle on
Remedy: Switch on spindle

8201 Internal thread error (IPO)
see 8199.

8201 Internal thread error (IPO)
see 8199.

8203 Fatal AC error (0-ptr IPO)
see 8199.

8204 Fatal init error: PLC/IPO running
see 8199.

8205 PLC Runtime exceeded
Cause: Insufficient computer performance

8206 Invalid PLC M-group initialisation
see 8199.

8207 Invalid PLC machine data
see 8199.

8208 Invalid application message
see 8199.

8212 Rotation axis not allowed
see 8199.

8213 Circle and rotation axis can't be interpolated

8214 Thread and rotation axis can't be interpolated

8215 Invalid state
see 8199.

8216 No rotation axis for rotation axis switch
see 8199.

8217 Axis type not valid!
Cause: Switching during the rotary axis operating mode when the spindle is running.
Remedy: Stop the spindle and switch over to the rotary axis operating mode.

8218 Referencing round axis without selected round axis!
see 8199.

8219 Thread not allowed without spindle encoder!
Cause: Thread cutting, respectively tapping is only possible with spindles with encoders.

8220 Buffer length exceeded in PC send message!
see 8199.

8221 Spindle release although axis is no spindle!
see 8199.

8222 New master spindle is not valid
Cause: The indicated master spindle is not valid when switching over to the master spindle.
Remedy: Correct the spindle number.

8224 Invalid stop mode
see 8199.
8225 Invalid parameter for BC_MOVE_TO_IO!
Cause: The machine is not configured for touch probes. A traversing movement with rotary axis is not allowed during touch probe operating mode.
Remedy: Remove the rotary axis movement from the traversing movement.

8226 Rotary axis switch not valid (MSD data)!
Cause: The indicated spindle does not have a rotary axis.

8228 Rotary axis switch not allowed while axis move!
Cause: The rotary axis has moved during switching over to the spindle operating mode.
Remedy: Stop the rotary axis before switching.

8229 Spindle on not allowed while rotary axis is active!

8230 Program start not allowed due to active spindle rotation axis!

8231 Axis configuration (MSD) for TRANSMIT not valid!
Cause: Transmit is not possible at this machine.

8232 Axis configuration (MSD) for TRACYL not valid!
Cause: Tracyl is not possible at this machine.

8233 Axis not available while TRANSMIT/TRACYL is active!
Cause: Programming of the rotary axis is not allowed during Transmit/Tracyl.

8234 Axis control grant removed by PLC while axis interpolates!
Cause: Internal error
Remedy: Delete error with reset and inform EMCO.

8235 Interpolation invalid while axis control grant is off by PLC!
see 8234.

8236 TRANSMIT/TRACYL activated while axis or spindle moves!
see 8234.

8237 Motion through pole in TRANSMIT!
Cause: It is not allowed to move through the coordinates X0 Y0 in Transmit.
Remedy: Alter the traversing movement.

8238 Speed limit in TRANSMIT exceeded!
Cause: The traversing movement gets too close to the coordinates X0 Y0. In order to observe the programmed feed rate, the maximum speed of the rotary axis would have to be exceeded.
Remedy: Reduce the feed rate. Set the value of the C-axis feed limitation in WinConfig, machine data settings / general machine data/ to 0.2. Thus, the feed rate will be automatically reduced near the coordinates X0 Y0.

8239 DAU exceeded 10V limit!
Cause: Internal error
Remedy: Start the software again or install it anew. Report the error to EMCO.

8240 Function not valid during active transformation (TRANSMIT/TRACYL)!
Cause: The Jog and INC operating mode are not possible during Transmit in X/C and during Tracyl in the rotary axis.

8241 TRANSMIT not enabled (MSD)!
Cause: Transmit is not possible at this machine.

8242 TRACYL not enabled (MSD)!
Cause: Tracyl is not possible at this machine.

8243 Round axis invalid during active transformation!
Cause: It is not allowed to program the rotary axis during Transmit/Tracyl.

8245 TRACYL radius = 0!
Cause: When selecting Tracyl, a radius of 0 was used.
Remedy: Correct the radius.

8246 Offset alignment not valid for this state!
see 8239.

8247 Offset alignment: MSD file write protected!

8248 Cyclic supervision failed!
Cause: The communication with the machine keyboard is interrupted.
Remedy: Start the software again or install it anew. Report the error to EMCO.

8249 Axis motion check alarm!
see 8239

8250 Spindle must be rotation axis!
see 8239

8251 Lead for G331/G332 missing!
see 8239

8252 Multiple or no linear axis programmed for G331/G332!
Remedy: Program exactly one linear axis.

8253 Speed value for G331/G332 and G96 missing!
Cause: No cutting speed has been programmed.
Remedy: Program the cutting speed.

8254 Value for thread starting point offset not valid!
Cause: The thread starting point offset is not within the range of 0 to 360°.
Remedy: Correct the thread starting point offset.
8255 Reference point not in valid software limits!
Cause: The reference point has been defined outside the software limit switches.
Remedy: Correct the reference points in WinConfig.

8256 Spindle speed too low while executing G331/G332!
Cause: During tapping the spindle speed has decreased. Perhaps the incorrect threading pitch was used or the core drilling is not correct.
Remedy: Correct the threading pitch. Adapt the diameter to the core drilling.

8257 Real Time Module not active or PCI card not found!
Cause: ACC could not be started correctly or the PCI card in the ACC was not recognized.
Remedy: Report the error to EMCO.

8258 Error allocating Linux data!
see 8239.

8259 Current thread in sequence not valid!
Cause: One block of a thread in sequence has been programmed without thread G33.
Remedy: Correct the program.

8261 Missing thread in sequence!
Cause: A successive thread has not been programmed for a thread in sequence, the number has to be in accordance with the SETTHREADCOUNT() that has been defined before.
Remedy: Correct the number of threads in the thread in sequence and add a thread.

8262 Reference marks are not close enough!
Cause: The settings of the linear scale have been changed or the linear scale is defective.
Remedy: Correct the settings. Contact EMCO.

8263 Reference marks are too close together!
see 8262.

22000 Gear change not allowed
Cause: Gear step change when the spindle is active.
Remedy: Stop the spindle and carry out a gear step change.

22270 Feed too high (thread)
Cause: Thread pitch too large / missing. Feed for thread reaches 80% of rapid feed
Remedy: Program correction, lower pitch or lower spindle speed for thread
I: Control Alarms

Control Alarms
These alarms can occur only with operating and programming the control functions or with running CNC programs.

1 RS32 parity error
Cause: Data transmission error parity error, wrong RS 232 setting in external device
Remedy: Check data cables, set serial interface of the external device

2 RS323 transmission error
Cause: Data transmission error character overflow
Data transmission error invalid data frame
Remedy: Check data cables, set serial interface of the external device

10 Nxxxx Invalid G-code
Remedy: Program correction

11 ORDxx Feed wrong/missing
Cause: Attempt to start with feed = 0, also with G95/96, if S = 0 or M5
Remedy: Program correction

21 Nxxxx Circle: Wrong plane selected
Cause: The wrong plane (G17, 18, 19) is active for a circle
Remedy: Program correction

30 Nxxxx Invalid tool offset number
Cause: The lower 2 digits of the T number are to great
Remedy: Program correction

33 Nxxxx CRC can’t be determined
Cause: Too much blocks without new position programmed, invalid contour element, programmed circle radius smaller than cutter radius, contour element to short.
Remedy: Program correction

34 Nxxxx Error on deactivating CRC
Remedy: Program correction

37 Nxxxx Plane change while CRC act.
Cause: Change of plane not permitted with active cutter radius compensation
Remedy: Program correction

41 Nxxxx Contour violation CRC
Cause: Invalid contour element, programmed circle radius smaller than cutter radius, contour element to short, contour violation with full circle.
Remedy: Program correction

51 Nxxxx Wrong chamfer/radius value
Cause: The contour elements between a chamfer / radius should be inserted are too short.
Remedy: Program correction

52 Nxxxx Invalid contour draft
Cause: From the programmed parameters no valid contour draft would result
Remedy: Program correction

53 Nxxxx Wrong parameter structure
Cause: From the programmed parameters no valid contour draft would result, wrong parameter programmed
Remedy: Program correction

56 Nxxxx Wrong angle value
Cause: With the programmed angle no intersection point would result
Remedy: Program correction

57 Nxxxx Error in contour draft
Cause: Invalid parameters programmed.
Remedy: Program correction

58 Nxxxx Contour draft not determinable
Cause: Too much blocks without new position programmed, program end while contour draft.
Remedy: Program correction

60 Nxxxx Block number not found
Cause: Jump target not found
Remedy: Program correction

62 Nxxxx General cycle error
Cause: Call-up counter of subprogram call invalid, feed<=0, thread pitch missing/<=0, cutting depth missing/<=0/invalid, retraction height to small, block address P/Q missing, declaration pattern repetition missing/invalid, infeed for next cut missing/invalid, undercut at cycle ground <0, cycle end point missing/invalid, thread end point missing/invalid;
Remedy: Program correction

63 Nxxxx Wrong Cycle call
Cause: P/Q missing, wrong address
Remedy: Program correction

70 Insufficient memory
Cause: The PC has not enough memory
Remedy: Close all other Windows applications, remove resident programs from memory, restart the PC
71 Program not found
Cause: NC program not found
With program start no program was selected
Remedy: Correct call-up or create program, select program

73 File already exists!
Remedy: Select other file name.

77 Insufficient RAM for subroutine
Cause: Subprograms interlocked too deep
Remedy: Program correction

83 Nxxxx Circle not in active plane
Cause: Circle is not in active plane for CRC
Remedy: Program correction

142 Wrong simulation area
Cause: Wrong scale factor (e.g. 0) programmed
Remedy: Program correction

142 Invalid scale factor
Cause: No or an invalid simulation area was entered
Remedy: Enter correct simulation area

315 ORDxx Rotary checking X
Cause: The step motor has fallen out of pace
Remedy: Reduce infeed and feed, check slides for smooth running, approach reference point

325 ORDxx Rotary checking Y
see alarm 315

335 ORDxx Rotary checking Z
see alarm 315

500 ORDxx Target point exceeds work.area
Cause: Target point, circle target point or circle out of working area limitation
Remedy: Program correction

501 ORDxx Target point exceeds SW limit
Cause: Target point, circle target point or circle out of working area limitation
Remedy: Program correction

510 ORDxx Software-limit switch X
Cause: Software limit switch in X exceeded (JOG)
Remedy: Traverse back manually

520 ORDxx Software-limit switch Y
see 510

530 ORDxx Software-limit switch Z
see 510

2501 ORDxx Synchronisation-error AC
Remedy: RESET, report to EMCO if reproducible

2502 ORDxx Synchronisation-error AC
see 2501

2503 ORDxx Synchronisation-error AC
see 2501

2504 ORDxx No memory for interpreter
Cause: Too less RAM memory, continuing the program is not possible
Remedy: Close all Windows application, close WinNC, remove resident programs from AUTOEXEC.BAT and CONFIG.SYS, restart the PC

2505 ORDxx No memory for interpreter
see 2504

2506 ORDxx Too less RAM
see 2504

2507 ORDxx Reference point not active
see 2504

2508 ORDxx Internal error NC core
Remedy: RESET, report to EMCO if reproducible

2520 ORDxx RS485 device absent
Cause: With program start a RS485 device did not report, while program run a device got defective
AC Axis controller
SPS PLC
MT control keyboard
Remedy: Switch on RS485 device (machine, control keyboard), check cables and plugs, check terminator plug, report to EMCO if reproducible

2521 ORDxx RS485 communication error
Remedy: PC restart, report to EMCO if reproducible

2522 ORDxx RS485 communication error
Remedy: PC restart, report to EMCO if reproducible

2523 ORDxx INIT error on RS485 PC-board
See "Software Installation", Mistakes with installation of the software

2524 ORDxx Gen.-Failure RS485 PC-board
Remedy: PC restart, report to EMCO if reproducible

2525 ORDxx Transmit error RS485
Cause: Transmission error by poor plug connections, missing terminator, external sources of electromagnetic interference
Remedy: Check the error sources above

2526 ORDxx Transmit error RS485
see 2525

2527 ORDxx Internal error AC
Remedy: Switch machine off/on, report to EMCO if reproducible

2528 ORDxx Operating system error PLC
Remedy: Switch machine off/on, report to EMCO if reproducible

2529 ORDxx External keyboard error
Remedy: The external keyboard always must be switched on after the PC. Restart the software, report to EMCO if reproducible
2540 **ORDxx Error saving setting-data**
Cause: Hard disk full, wrong path setting, no writing access
Remedy: Check hard disk space, check writing access, reinstallation of the software if reproducible

2545 **ORDxx Drive / Device not ready**
Remedy: Insert disk, lock drive, check disk drive, ...

2546 **ORDxx Checksum error machine-data**
Remedy: Restart, report to EMCO if reproducible

2550 **ORDxx PLC simulation error**
Remedy: Restart, report to EMCO if reproducible

2551 **ORDxx PLC simulation error**
Remedy: Restart, report to EMCO if reproducible

2562 **Read error on CNC program**
Cause: Defective program file, DOS read error (disk, hard disk)
Remedy: Solve problem on DOS level, eventually reinstallation of the software

2614 **ORDxx Internal error MSD**
Remedy: Report to EMCO if reproducible

2650 **ORDxx Internal error cycle call up**
Cause: Invalid cycle call when a cycle was called with a G command
Remedy: Program correction

2849 **Internal error CRC**
Remedy: Report to EMCO if reproducible

2904 **Helix Z value too large**
Cause: The pitch of the helix must not be larger than 45°
Remedy: Program correction